Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 50(10): 6535-6542, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37338935

RESUMO

BACKGROUND: Dynamic trajectory radiotherapy (DTRT) extends state-of-the-art volumetric modulated arc therapy (VMAT) by dynamic table and collimator rotations during beam-on. The effects of intrafraction motion during DTRT delivery are unknown, especially regarding the possible interplay between patient and machine motion with additional dynamic axes. PURPOSE: To experimentally assess the technical feasibility and quantify the mechanical and dosimetric accuracy of respiratory gating during DTRT delivery. METHODS: A DTRT and VMAT plan are created for a clinically motivated lung cancer case and delivered to a dosimetric motion phantom (MP) placed on the table of a TrueBeam system using Developer Mode. The MP reproduces four different 3D motion traces. Gating is triggered using an external marker block, placed on the MP. Mechanical accuracy and delivery time of the VMAT and DTRT deliveries with and without gating are extracted from the logfiles. Dosimetric performance is assessed by means of gamma evaluation (3% global/2 mm, 10% threshold). RESULTS: The DTRT and VMAT plans are successfully delivered with and without gating for all motion traces. Mechanical accuracy is similar for all experiments with deviations <0.14° (gantry angle), <0.15° (table angle), <0.09° (collimator angle) and <0.08 mm (MLC leaf positions). For DTRT (VMAT), delivery times are 1.6-2.3 (1.6- 2.5) times longer with than without gating for all motion traces except one, where DTRT (VMAT) delivery is 5.0 (3.6) times longer due to a substantial uncorrected baseline drift affecting only DTRT delivery. Gamma passing rates with (without) gating for DTRT/VMAT were ≥96.7%/98.5% (≤88.3%/84.8%). For one VMAT arc without gating it was 99.6%. CONCLUSION: Gating is successfully applied during DTRT delivery on a TrueBeam system for the first time. Mechanical accuracy is similar for VMAT and DTRT deliveries with and without gating. Gating substantially improved dosimetric performance for DTRT and VMAT.


Assuntos
Neoplasias Pulmonares , Radioterapia de Intensidade Modulada , Humanos , Estudos de Viabilidade , Radiometria , Pulmão , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica
2.
Med Phys ; 38(10): 5311-20, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21992349

RESUMO

PURPOSE: Recently, the new high definition multileaf collimator (HD120 MLC) was commercialized by Varian Medical Systems providing high resolution in the center section of the treatment field. The aim of this work is to investigate the characteristics of the HD120 MLC using Monte Carlo (MC) methods. METHODS: Based on the information of the manufacturer, the HD120 MLC was implemented into the already existing Swiss MC Plan (SMCP). The implementation has been configured by adjusting the physical density and the air gap between adjacent leaves in order to match transmission profile measurements for 6 and 15 MV beams of a Novalis TX. These measurements have been performed in water using gafchromic films and an ionization chamber at an SSD of 95 cm and a depth of 5 cm. The implementation was validated by comparing diamond measured and calculated penumbra values (80%-20%) for different field sizes and water depths. Additionally, measured and calculated dose distributions for a head and neck IMRT case using the DELTA(4) phantom have been compared. The validated HD120 MLC implementation has been used for its physical characterization. For this purpose, phase space (PS) files have been generated below the fully closed multileaf collimator (MLC) of a 40 × 22 cm(2) field size for 6 and 15 MV. The PS files have been analyzed in terms of energy spectra, mean energy, fluence, and energy fluence in the direction perpendicular to the MLC leaves and have been compared with the corresponding data using the well established Varian 80 leaf (MLC80) and Millennium M120 (M120 MLC) MLCs. Additionally, the impact of the tongue and groove design of the MLCs on dose has been characterized. RESULTS: Calculated transmission values for the HD120 MLC are 1.25% and 1.34% in the central part of the field for the 6 and 15 MV beam, respectively. The corresponding ionization chamber measurements result in a transmission of 1.20% and 1.35%. Good agreement has been found for the comparison between transmission profiles resulting from MC simulations and film measurements. The simulated and measured values for the penumbra agreed within <0.5 mm for all field sizes, depths, and beam energies, and a good agreement has been found between the measured and the calculated dose distributions for the IMRT case. The total energy spectra are almost identical for the three MLCs. However, the mean energy, fluence and energy fluence are significantly different. Due to the different leaf widths of the MLCs, the shape of these distributions is different, each representing its leave structure. Due to the increase in width from the inner to the outer HD120 MLC leaves, the fluence and energy fluence clearly decrease below the outer leaves. The MLC80 and the M120 MLC resulted in an increase of the fluence and energy fluence compared with those resulted for the HD120 MLC. The dose reduction can exceed 20% compared with the dose of the open field due to the tongue and groove design of the HD120 MLC. CONCLUSIONS: The HD120 MLC has been successfully implemented into the SMCP. Comparisons between MC calculations and measurements show very good agreement. The SMCP is now able to calculate accurate dose distributions for treatment plans using the HD120 MLC.


Assuntos
Dosimetria Fotográfica/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada/instrumentação , Simulação por Computador , Humanos , Íons , Método de Monte Carlo , Imagens de Fantasmas , Linguagens de Programação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes , Software , Filme para Raios X
3.
Z Med Phys ; 29(1): 31-38, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29631759

RESUMO

PURPOSE: Using volumetric modulated arc therapy (VMAT) delivery technique gantry position, multi-leaf collimator (MLC) as well as dose rate change dynamically during the application. However, additional components can be dynamically altered throughout the dose delivery such as the collimator or the couch. Thus, the degrees of freedom increase allowing almost arbitrary dynamic trajectories for the beam. While the dose delivery of such dynamic trajectories for linear accelerators is technically possible, there is currently no dose calculation and validation tool available. Thus, the aim of this work is to develop a dose calculation and verification tool for dynamic trajectories using Monte Carlo (MC) methods. METHODS: The dose calculation for dynamic trajectories is implemented in the previously developed Swiss Monte Carlo Plan (SMCP). SMCP interfaces the treatment planning system Eclipse with a MC dose calculation algorithm and is already able to handle dynamic MLC and gantry rotations. Hence, the additional dynamic components, namely the collimator and the couch, are described similarly to the dynamic MLC by defining data pairs of positions of the dynamic component and the corresponding MU-fractions. For validation purposes, measurements are performed with the Delta4 phantom and film measurements using the developer mode on a TrueBeam linear accelerator. These measured dose distributions are then compared with the corresponding calculations using SMCP. First, simple academic cases applying one-dimensional movements are investigated and second, more complex dynamic trajectories with several simultaneously moving components are compared considering academic cases as well as a clinically motivated prostate case. RESULTS: The dose calculation for dynamic trajectories is successfully implemented into SMCP. The comparisons between the measured and calculated dose distributions for the simple as well as for the more complex situations show an agreement which is generally within 3% of the maximum dose or 3mm. The required computation time for the dose calculation remains the same when the additional dynamic moving components are included. CONCLUSION: The results obtained for the dose comparisons for simple and complex situations suggest that the extended SMCP is an accurate dose calculation and efficient verification tool for dynamic trajectory radiotherapy. This work was supported by Varian Medical Systems.


Assuntos
Método de Monte Carlo , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Reprodutibilidade dos Testes
4.
Am J Trop Med Hyg ; 80(5): 819-23, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19407130

RESUMO

Interventions to improve water quality, particularly when deployed at the household level, are an effective means of preventing endemic diarrheal disease, a leading cause of mortality and morbidity in the developing world. We assessed the microbiologic performance of a novel water treatment device designed for household use in low-income settings. The device employs a backwashable hollow fiber ultrafiltration cartridge and is designed to mechanically remove enteric pathogenic bacteria, viruses, and protozoan cysts from drinking water without water pressure or electric power. In laboratory testing through 20,000 L (approximately 110% of design life) at moderate turbidity (15 nephelometric turbidity unit [NTU]), the device achieved log(10) reduction values of 6.9 for Escherichia coli, 4.7 for MS2 coliphage (proxy for enteric pathogenic viruses), and 3.6 for Cryptosporidium oocysts, thus exceeding levels established for microbiological water purifiers. With periodic cleaning and backwashing, the device produced treated water at an average rate of 143 mL/min (8.6 L/hour) (range 293 to 80 mL/min) over the course of the evaluation. If these results are validated in field trials, the deployment of the unit on a wide scale among vulnerable populations may make an important contribution to public health efforts to control intractable waterborne diseases.


Assuntos
Ultrafiltração/instrumentação , Purificação da Água/instrumentação , Animais , Cryptosporidium , Escherichia coli , Gravitação , Utensílios Domésticos , Humanos , Oocistos , Pobreza , Microbiologia da Água/normas , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA