Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 278(1709): 1131-40, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21227966

RESUMO

Climate change research is increasingly focusing on the dynamics among species, ecosystems and climates. Better data about the historical behaviours of these dynamics are urgently needed. Such data are already available from ecology, archaeology, palaeontology and geology, but their integration into climate change research is hampered by differences in their temporal and geographical scales. One productive way to unite data across scales is the study of functional morphological traits, which can form a common denominator for studying interactions between species and climate across taxa, across ecosystems, across space and through time-an approach we call 'ecometrics'. The sampling methods that have become established in palaeontology to standardize over different scales can be synthesized with tools from community ecology and climate change biology to improve our understanding of the dynamics among species, ecosystems, climates and earth systems over time. Developing these approaches into an integrative climate change biology will help enrich our understanding of the changes our modern world is undergoing.


Assuntos
Mudança Climática , Adaptação Biológica , Animais , Evolução Biológica , Ecossistema , Dinâmica Populacional , Especificidade da Espécie
2.
Integr Zool ; 5(2): 88-101, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21392327

RESUMO

We outline here an approach for understanding the biology of climate change, one that integrates data at multiple spatial and temporal scales. Taxon-free trait analysis, or "ecometrics," is based on the idea that the distribution in a community of ecomorphological traits such as tooth structure, limb proportions, body mass, leaf shape, incubation temperature, claw shape, any aspect of anatomy or physiology can be measured across some subset of the organisms in a community. Regardless of temporal or spatial scale, traits are the means by which organisms interact with their environment, biotic and abiotic. Ecometrics measures these interactions by focusing on traits which are easily measurable, whose structure is closely related to their function, and whose function interacts directly with local environment. Ecometric trait distributions are thus a comparatively universal metric for exploring systems dynamics at all scales. The main challenge now is to move beyond investigating how future climate change will affect the distribution of organisms and how it will impact ecosystem services and to shift the perspective to ask how biotic systems interact with changing climate in general, and how climate change affects the interactions within and between the components of the whole biotic-physical system. We believe that it is possible to provide believable, quantitative answers to these questions. Because of this we have initiated an IUBS program iCCB (integrative Climate Change Biology).


Assuntos
Adaptação Biológica/fisiologia , Biologia/métodos , Biota , Mudança Climática , Meio Ambiente , Modelos Biológicos , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA