RESUMO
Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.
Assuntos
Alelopatia , Diatomáceas , Oxilipinas , Oxilipinas/metabolismo , Animais , Organismos Aquáticos , ZooplânctonRESUMO
Sinking particulate organic matter (POM) is a primary component of the ocean's biological carbon pump that is responsible for carbon export from the surface to the deep sea. Lipids derived from plankton comprise a significant fraction of sinking POM. Our understanding of planktonic lipid biosynthesis and the subsequent degradation of lipids in sinking POM is based on the analysis of bulk samples that combine many millions of plankton cells or dozens of sinking particles, which averages out natural heterogeneity. We developed and applied a nanoflow high-performance liquid-chromatography electrospray-ionization high-resolution accurate-mass mass spectrometry lipidomic method to show that two types of sinking particlesâmarine snow and fecal pelletsâcollected in the western North Atlantic Ocean have distinct lipidomes, providing new insights into their sources and degradation that would not be apparent from bulk samples. We pressed the limit of this approach by examining individual diatom cells from a single culture, finding marked lipid heterogeneity, possibly indicative of fundamental mechanisms underlying cell division. These single-cell data confirm that even cultures of phytoplankton cells should be viewed as mixtures of physiologically distinct populations. Overall, this work reveals previously hidden lipidomic heterogeneity in natural POM and phytoplankton cells, which may provide critical new insights into microscale chemical and microbial processes that control the export of sinking POM.
Assuntos
Lipidômica , Fitoplâncton , Oceanos e Mares , Plâncton , Água do MarRESUMO
Two prominent characteristics of marine coccolithophores are their secretion of coccoliths and their susceptibility to infection by coccolithoviruses (EhVs), both of which display variation among cells in culture and in natural populations. We examined the impact of calcification on infection by challenging a variety of Emiliania huxleyi strains at different calcification states with EhVs of different virulence. Reduced cellular calcification was associated with increased infection and EhV production, even though calcified cells and associated coccoliths had significantly higher adsorption coefficients than non-calcified (naked) cells. Sialic acid glycosphingolipids, molecules thought to mediate EhV infection, were generally more abundant in calcified cells and enriched in purified, sorted coccoliths, suggesting a biochemical link between calcification and adsorption rates. In turn, viable EhVs impacted cellular calcification absent of lysis by inducing dramatic shifts in optical side scatter signals and a massive release of detached coccoliths in a subpopulation of cells, which could be triggered by resuspension of healthy, calcified host cells in an EhV-free, 'induced media'. Our findings show that calcification is a key component of the E. huxleyi-EhV arms race and an aspect that is critical both to the modelling of these host-virus interactions in the ocean and interpreting their impact on the global carbon cycle.
Assuntos
Haptófitas/virologia , Phycodnaviridae/fisiologia , Doenças das Plantas/virologia , Calcinose , Haptófitas/fisiologia , Interações Hospedeiro-Patógeno , Phycodnaviridae/genética , Phycodnaviridae/isolamento & purificaçãoRESUMO
Coccolithoviruses (EhVs) are large, double-stranded DNA-containing viruses that infect the single-celled, marine coccolithophore Emiliania huxleyi. Given the cosmopolitan nature and global importance of E. huxleyi as a bloom-forming, calcifying, photoautotroph, E. huxleyi-EhV interactions play a key role in oceanic carbon biogeochemistry. Virally-encoded glycosphingolipids (vGSLs) are virulence factors that are produced by the activity of virus-encoded serine palmitoyltransferase (SPT). Here, we characterize the dynamics, diversity and catalytic production of vGSLs in an array of EhV strains in relation to their SPT sequence composition and explore the hypothesis that they are a determinant of infectivity and host demise. vGSL production and diversity was positively correlated with increased virulence, virus replication rate and lytic infection dynamics in laboratory experiments, but they do not explain the success of less-virulent EhVs in natural EhV communities. The majority of EhV-derived SPT amplicon sequences associated with infected cells in the North Atlantic derived from slower infecting, less virulent EhVs. Our lab-, field- and mathematical model-based data and simulations support ecological scenarios whereby slow-infecting, less-virulent EhVs successfully compete in North Atlantic populations of E. huxleyi, through either the preferential removal of fast-infecting, virulent EhVs during active infection or by having access to a broader host range.
Assuntos
Glicoesfingolipídeos/biossíntese , Phycodnaviridae/metabolismo , Ecologia , Haptófitas/virologia , Modelos Teóricos , Phycodnaviridae/enzimologia , Phycodnaviridae/genética , Phycodnaviridae/patogenicidade , Serina C-Palmitoiltransferase , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Replicação ViralRESUMO
Phytoplankton inhabiting oligotrophic ocean gyres actively reduce their phosphorus demand by replacing polar membrane phospholipids with those lacking phosphorus. Although the synthesis of nonphosphorus lipids is well documented in some heterotrophic bacterial lineages, phosphorus-free lipid synthesis in oligotrophic marine chemoheterotrophs has not been directly demonstrated, implying they are disadvantaged in phosphate-deplete ecosystems, relative to phytoplankton. Here, we show the SAR11 clade chemoheterotroph Pelagibacter sp. str. HTCC7211 renovates membrane lipids when phosphate starved by replacing a portion of its phospholipids with monoglucosyl- and glucuronosyl-diacylglycerols and by synthesizing new ornithine lipids. Lipid profiles of cells grown with excess phosphate consisted entirely of phospholipids. Conversely, up to 40% of the total lipids were converted to nonphosphorus lipids when cells were starved for phosphate, or when growing on methylphosphonate. Cells sequentially limited by phosphate and methylphosphonate transformed >75% of their lipids to phosphorus-free analogs. During phosphate starvation, a four-gene cluster was significantly up-regulated that likely encodes the enzymes responsible for lipid renovation. These genes were found in Pelagibacterales strains isolated from a phosphate-deficient ocean gyre, but not in other strains from coastal environments, suggesting alternate lipid synthesis is a specific adaptation to phosphate scarcity. Similar gene clusters are found in the genomes of other marine α-proteobacteria, implying lipid renovation is a common strategy used by heterotrophic cells to reduce their requirement for phosphorus in oligotrophic habitats.
Assuntos
Metabolismo dos Lipídeos , Fosfatos/metabolismo , Perfilação da Expressão Gênica , Genes Bacterianos , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/metabolismoRESUMO
Discovery and identification of molecular biomarkers in large LC/MS data sets requires significant automation without loss of accuracy in the compound screening and annotation process. Here, we describe a lipidomics workflow and open-source software package for high-throughput annotation and putative identification of lipid, oxidized lipid, and oxylipin biomarkers in high-mass-accuracy HPLC-MS data. Lipid and oxylipin biomarker screening through adduct hierarchy sequences, or LOBSTAHS, uses orthogonal screening criteria based on adduct ion formation patterns and other properties to identify thousands of compounds while providing the user with a confidence score for each assignment. Assignments are made from one of two customizable databases; the default databases contain 14â¯068 unique entries. To demonstrate the software's functionality, we screened more than 340â¯000 mass spectral features from an experiment in which hydrogen peroxide was used to induce oxidative stress in the marine diatom Phaeodactylum tricornutum. LOBSTAHS putatively identified 1969 unique parent compounds in 21â¯869 features that survived the multistage screening process. While P. tricornutum maintained more than 92% of its core lipidome under oxidative stress, patterns in biomarker distribution and abundance indicated remodeling was both subtle and pervasive. Treatment with 150 µM H2O2 promoted statistically significant carbon-chain elongation across lipid classes, with the strongest elongation accompanying oxidation in moieties of monogalactosyldiacylglycerol, a lipid typically localized to the chloroplast. Oxidative stress also induced a pronounced reallocation of lipidome peak area to triacylglycerols. LOBSTAHS can be used with environmental or experimental data from a variety of systems and is freely available at https://github.com/vanmooylipidomics/LOBSTAHS .
Assuntos
Biomarcadores/análise , Ensaios de Triagem em Larga Escala/métodos , Lipídeos/análise , Oxilipinas/análise , Biomarcadores/química , Biomarcadores/metabolismo , Cromatografia Líquida , Bases de Dados de Compostos Químicos/estatística & dados numéricos , Diatomáceas/química , Peróxido de Hidrogênio/efeitos adversos , Isomerismo , Metabolismo dos Lipídeos , Lipídeos/química , Espectrometria de Massas , Estresse Oxidativo/efeitos dos fármacos , Oxilipinas/química , Oxilipinas/metabolismoRESUMO
Nutrient availability is an important factor controlling phytoplankton productivity. Phytoplankton contribute c. 50% of the global photosynthesis and possess efficient acclimation mechanisms to cope with nutrient stress. We investigate the cellular response of the bloom-forming coccolithophore Emiliania huxleyi to phosphorus (P) scarcity, which is often a limiting factor in marine ecosystems. We combined mass spectrometry, fluorescence microscopy, transmission electron microscopy (TEM) and gene expression analyses in order to assess diverse cellular features in cells exposed to P limitation and recovery. Early starvation-induced substitution of phospholipids in the cells' membranes with galacto- and betaine lipids. Lipid remodeling was rapid and reversible upon P resupply. The PI3K inhibitor wortmannin reduced phospholipid substitution, suggesting a possible involvement of PI3K- signaling in this process. In addition, P limitation enhanced the formation and acidification of membrane vesicles in the cytoplasm. Intracellular vesicles may facilitate the recycling of cytoplasmic content, which is engulfed in the vesicles and delivered to the main vacuole. Long-term starvation was characterized by a profound increase in cell size and morphological alterations in cellular ultrastructure. This study provides cellular and molecular basis for future ecophysiological assessment of natural E. huxleyi populations in oligotrophic regions.
Assuntos
Endocitose , Haptófitas/metabolismo , Fósforo/deficiência , Fosfatase Alcalina/metabolismo , Androstadienos/farmacologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Endocitose/efeitos dos fármacos , Haptófitas/citologia , Haptófitas/efeitos dos fármacos , Haptófitas/ultraestrutura , Lipídeos/química , Modelos Biológicos , WortmaninaRESUMO
Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, 'phytoplankton' collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 +/- 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, 'substitute lipids' were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.
Assuntos
Metabolismo dos Lipídeos , Lipídeos/química , Fósforo/deficiência , Fitoplâncton/metabolismo , Água do Mar/química , Carbono/análise , Lipídeos de Membrana/química , Nitrogênio/análise , Nitrogênio/metabolismo , Oceanos e Mares , Fosfatos/metabolismo , Fosfolipídeos/biossíntese , Fósforo/análise , Água do Mar/microbiologia , Synechococcus/química , Synechococcus/metabolismoRESUMO
Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host-virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the "arms race" between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi-EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host-virus interactions in natural systems.
Assuntos
Linhagem da Célula , Haptófitas/citologia , Haptófitas/virologia , Interações Hospedeiro-Patógeno/fisiologia , Phycodnaviridae/fisiologia , Biopolímeros/biossíntese , Caspases/metabolismo , Ativação Enzimática , Eutrofização , Haptófitas/enzimologia , Noruega , Frações Subcelulares/virologia , Fatores de TempoRESUMO
Viruses play a key role in controlling the population dynamics of algae, including Emiliania huxleyi, a globally distributed haptophyte with calcite coccoliths that comprise ca. 50% of the sinking carbonate flux from the surface ocean. Emiliania huxleyi viruses (EhVs) routinely infect and terminate E. huxleyi blooms. EhVs are surrounded by a lipid envelope, which we found to be comprised largely of glycosphingolipids (GSLs) with lesser amounts of polar glycerolipids. Infection appears to involve membrane fusion between the virus and host, and we hypothesized that specific polar lipids may facilitate virus attachment. We identified three novel intact polar lipids in E. huxleyi strain CCMP 374 and EhV86, including a GSL with a monosaccharide sialic acid headgroup (sGSL); for all 11 E. huxleyi strains we tested, there was a direct relationship between sGSL content and sensitivity to infection by EhV1, EhV86 and EhV163. In mesocosms, the E. huxleyi population with greatest initial sGSL content had the highest rate of virus-induced mortality. We propose potential physiological roles for sGSL that would be beneficial for growth but leave cells susceptible to infection, thus furthering the discussion of Red Queen-based co-evolution and the cost(s) of sensitivity and resistance in the dynamic E. huxleyi-EhV system.
Assuntos
Glicoesfingolipídeos/fisiologia , Haptófitas/virologia , Phycodnaviridae/patogenicidade , Haptófitas/fisiologia , Interações Hospedeiro-PatógenoRESUMO
The accumulation of microbial biofilms on ships' hulls negatively affects ship performance and efficiency while also playing a role in the establishment of even more detrimental hard-fouling communities. However, there is little quantitative information on how the accumulation rate of microbial biofilms is impacted by the balance of the rates of cell settlement, in situ production (ie growth), dispersal to surrounding waters and mortality induced by grazers. These rates were quantified on test panels coated with copper-based antifouling (AF) or polymer-based fouling-release (FR) coatings by using phospholipids as molecular proxies for microbial biomass. The results confirmed the accepted modes of efficacy of these two types of coatings. In a more extensive set of experiments with only the FR coatings, it was found that seasonally averaged cellular production rates were 1.5 ± 0.5 times greater than settlement and the dispersal rates were 2.7 ± 0.8 greater than grazing. The results of this study quantitatively describe the dynamic balance of processes leading to the accumulation of microbial biofilm on coatings designed for ships' hulls.
Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Água do Mar/microbiologia , Fenômenos Fisiológicos Bacterianos , Biomassa , Fosfatos/análise , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Água do Mar/químicaRESUMO
Lipids comprise a significant fraction of sinking organic matter in the ocean and play a crucial role in the carbon cycle. Despite this, our understanding of the processes that control lipid degradation is limited. We combined nanolipidomics and imaging to study the bacterial degradation of diverse algal lipid droplets and found that bacteria isolated from marine particles exhibited distinct dietary preferences, ranging from selective to promiscuous degraders. Dietary preference was associated with a distinct set of lipid degradation genes rather than with taxonomic origin. Using synthetic communities composed of isolates with distinct dietary preferences, we showed that lipid degradation is modulated by microbial interactions. A particle export model incorporating these dynamics indicates that metabolic specialization and community dynamics may influence lipid transport efficiency in the ocean's mesopelagic zone.
Assuntos
Bactérias , Metabolismo dos Lipídeos , Oceanos e Mares , Fitoplâncton , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Gotículas Lipídicas/metabolismo , Interações Microbianas , Microbiota , Água do Mar/microbiologia , Água do Mar/química , Fitoplâncton/metabolismoRESUMO
Global-scale surveys of plankton communities using "omics" techniques have revolutionized our understanding of the ocean. Lipidomics has demonstrated the potential to add further essential insights on ocean ecosystem function but has yet to be applied on a global scale. We analyzed 930 lipid samples across the global ocean using a uniform high-resolution accurate-mass mass spectrometry analytical workflow, revealing previously unknown characteristics of ocean planktonic lipidomes. Focusing on 10 molecularly diverse glycerolipid classes, we identified 1151 distinct lipid species, finding that fatty acid unsaturation (i.e., number of carbon-carbon double bonds) is fundamentally constrained by temperature. We predict substantial declines in the essential fatty acid eicosapentaenoic acid over the next century, which are likely to have serious deleterious effects on economically critical fisheries.
Assuntos
Ecossistema , Ácidos Graxos Insaturados , Lipidômica , Plâncton , Temperatura , Carbono/química , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/classificação , Pesqueiros , Oceanos e Mares , Plâncton/química , Plâncton/metabolismo , Espectrometria de Massas em TandemRESUMO
Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure.
Assuntos
Fitoplâncton/fisiologia , Fitoplâncton/virologia , Água do Mar/microbiologia , Oceano Atlântico , Biomassa , Eutrofização , Estações do Ano , Água do Mar/química , Estresse Fisiológico , Fenômenos Fisiológicos ViraisRESUMO
Whale digestion plays an integral role in many ocean ecosystems. By digesting enormous quantities of lipid-rich prey, whales support their energy intensive lifestyle, but also excrete nutrients important to ocean biogeochemical cycles. Nevertheless, whale digestion is poorly understood. Gastrointestinal microorganisms play a significant role in vertebrate digestion, but few studies have examined them in whales. To investigate digestion of lipids, and the potential contribution of microbes to lipid digestion in whales, we characterized lipid composition (lipidomes) and bacterial communities (microbiotas) in 126 digesta samples collected throughout the gastrointestinal tracts of 38 bowhead whales (Balaena mysticetus) harvested by Alaskan Eskimos. Lipidomes and microbiotas were strongly correlated throughout the gastrointestinal tract. Lipidomes and microbiotas were most variable in the small intestine and most similar in the large intestine, where microbiota richness was greatest. Our results suggest digestion of wax esters, the primary lipids in B. mysticetus prey representing more than 80% of total dietary lipids, occurred in the mid- to distal small intestine and was correlated with specific microorganisms. Because wax esters are difficult to digest by other marine vertebrates and constitute a large reservoir of carbon in the ocean, our results further elucidate the essential roles that whales and their gastrointestinal microbiotas play in the biogeochemical cycling of carbon and nutrients in high-latitude seas.
Assuntos
Bactérias/isolamento & purificação , Baleia Franca/microbiologia , Microbioma Gastrointestinal , Lipídeos/química , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Baleia Franca/metabolismo , Digestão , Intestinos/microbiologia , Metabolismo dos Lipídeos , LipidômicaRESUMO
The stratified water column of the Black Sea produces a vertical succession of redox zones, stimulating microbial activity at the interfaces. Our study of intact polar membrane lipids (IPLs) in suspended particulate matter and sediments highlights their potential as biomarkers for assessing the taxonomic composition of live microbial biomass. Intact polar membrane lipids in oxic waters above the chemocline represent contributions of bacterial and eukaryotic photosynthetic algae, while anoxygenic phototrophic bacteria and sulfate-reducing bacteria comprise a substantial amount of microbial biomass in deeper suboxic and anoxic layers. Intact polar membrane lipids such as betaine lipids and glycosidic ceramides suggest unspecified anaerobic bacteria in the anoxic zone. Distributions of polar head groups and core lipids show planktonic archaea below the oxic zone; methanotrophic archaea are only a minor fraction of archaeal biomass in the anoxic zone, contrasting previous observations based on the apolar derivatives of archaeal lipids. Sediments contain algal and bacterial IPLs from the water column, but transport to the sediment is selective; bacterial and archaeal IPLs are also produced within the sediments. Intact polar membrane lipid distributions in the Black Sea are stratified in accordance with geochemical profiles and provide information on vertical successions of major microbial groups contributing to suspended biomass. This study vastly extends our knowledge of the distribution of complex microbial lipids in the ocean.
Assuntos
Bactérias/química , Biomassa , Eucariotos/química , Sedimentos Geológicos/microbiologia , Lipídeos de Membrana/química , Água do Mar/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biodiversidade , Biomarcadores/química , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , Europa Oriental , Sedimentos Geológicos/química , Glicolipídeos/química , Glicolipídeos/metabolismo , Lipídeos de Membrana/metabolismo , Oceanos e Mares , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Água do Mar/química , Espectrometria de Massas por Ionização por Electrospray , Microbiologia da ÁguaRESUMO
Emiliania huxleyi is a globally important marine phytoplankton that is routinely infected by viruses. Understanding the controls on the growth and demise of E. huxleyi blooms is essential for predicting the biogeochemical fate of their organic carbon and nutrients. In this study, we show that the production of nitric oxide (NO), a gaseous, membrane-permeable free radical, is a hallmark of early-stage lytic infection in E. huxleyi by Coccolithoviruses, both in culture and in natural populations in the North Atlantic. Enhanced NO production was detected both intra- and extra-cellularly in laboratory cultures, and treatment of cells with an NO scavenger significantly reduced viral production. Pre-treatment of exponentially growing E. huxleyi cultures with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prior to challenge with hydrogen peroxide (H2O2) led to greater cell survival, suggesting that NO may have a cellular antioxidant function. Indeed, cell lysates generated from cultures treated with SNAP and undergoing infection displayed enhanced ability to detoxify H2O2. Lastly, we show that fluorescent indicators of cellular ROS, NO, and death, in combination with classic DNA- and lipid-based biomarkers of infection, can function as real-time diagnostic tools to identify and contextualize viral infection in natural E. huxleyi blooms.
Assuntos
Haptófitas/virologia , Peróxido de Hidrogênio/toxicidade , Óxido Nítrico/biossíntese , Phycodnaviridae/fisiologia , Antioxidantes/metabolismo , Haptófitas/efeitos dos fármacos , Haptófitas/metabolismo , Fitoplâncton/metabolismo , Fitoplâncton/virologiaRESUMO
Sunlight is the dominant control on phytoplankton biosynthetic activity, and darkness deprives them of their primary external energy source. Changes in the biochemical composition of phytoplankton communities over diel light cycles and attendant consequences for carbon and energy flux in environments remain poorly elucidated. Here we use lipidomic data from the North Pacific subtropical gyre to show that biosynthesis of energy-rich triacylglycerols (TAGs) by eukaryotic nanophytoplankton during the day and their subsequent consumption at night drives a large and previously uncharacterized daily carbon cycle. Diel oscillations in TAG concentration comprise 23 ± 11% of primary production by eukaryotic nanophytoplankton representing a global flux of about 2.4 Pg C yr-1. Metatranscriptomic analyses of genes required for TAG biosynthesis indicate that haptophytes and dinoflagellates are active members in TAG production. Estimates suggest that these organisms could contain as much as 40% more calories at sunset than at sunrise due to TAG production.
Assuntos
Dinoflagellida/metabolismo , Dinoflagellida/efeitos da radiação , Haptófitas/metabolismo , Haptófitas/efeitos da radiação , Fitoplâncton/metabolismo , Fitoplâncton/efeitos da radiação , Triglicerídeos/biossíntese , Carbono/metabolismo , Ciclo do Carbono , Dinoflagellida/genética , Dinoflagellida/crescimento & desenvolvimento , Ecossistema , Haptófitas/genética , Haptófitas/crescimento & desenvolvimento , Oceanos e Mares , Fitoplâncton/crescimento & desenvolvimento , Luz SolarRESUMO
Marine phytoplankton account for approximately half of global primary productivity 1 , making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon 2 , which can stimulate nutrient regeneration, primary production and upper ocean respiration 2 via lytic infection and the 'virus shunt'. Ultimately, this limits the trophic transfer of carbon and energy to both higher food webs and the deep ocean 2 . Using imagery taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, along with a suite of diagnostic lipid- and gene-based molecular biomarkers, in situ optical sensors and sediment traps, we show that Coccolithovirus infections of mesoscale (~100 km) Emiliania huxleyi blooms in the North Atlantic are coupled with particle aggregation, high zooplankton grazing and greater downward vertical fluxes of both particulate organic and particulate inorganic carbon from the upper mixed layer. Our analyses captured blooms in different phases of infection (early, late and post) and revealed the highest export flux in 'early-infected blooms' with sinking particles being disproportionately enriched with infected cells and subsequently remineralized at depth in the mesopelagic. Our findings reveal viral infection as a previously unrecognized ecosystem process enhancing biological pump efficiency.
Assuntos
Carbono/metabolismo , Haptófitas/virologia , Phycodnaviridae/fisiologia , Ciclo do Carbono , Cadeia Alimentar , Haptófitas/fisiologia , Oceanos e Mares , Fitoplâncton/fisiologia , Fitoplâncton/virologia , Tecnologia de Sensoriamento Remoto , Imagens de Satélites , Água do Mar/virologiaRESUMO
Upon phosphorus (P) deficiency, marine phytoplankton reduce their requirements for P by replacing membrane phospholipids with alternative non-phosphorus lipids. It was very recently demonstrated that a SAR11 isolate also shares this capability when phosphate starved in culture. Yet, the extent to which this process occurs in other marine heterotrophic bacteria and in the natural environment is unknown. Here, we demonstrate that the substitution of membrane phospholipids for a variety of non-phosphorus lipids is a conserved response to P deficiency among phylogenetically diverse marine heterotrophic bacteria, including members of the Alphaproteobacteria and Flavobacteria. By deletion mutagenesis and complementation in the model marine bacterium Phaeobacter sp. MED193 and heterologous expression in recombinant Escherichia coli, we confirm the roles of a phospholipase C (PlcP) and a glycosyltransferase in lipid remodelling. Analyses of the Global Ocean Sampling and Tara Oceans metagenome data sets demonstrate that PlcP is particularly abundant in areas characterized by low phosphate concentrations. Furthermore, we show that lipid remodelling occurs seasonally and responds to changing nutrient conditions in natural microbial communities from the Mediterranean Sea. Together, our results point to the key role of lipid substitution as an adaptive strategy enabling heterotrophic bacteria to thrive in the vast P-depleted areas of the ocean.