Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260149

RESUMO

Inspired by Waddington's illustration of an epigenetic landscape, cell-fate transitions have been envisioned as bifurcating dynamical systems, wherein exogenous signaling dynamics couple to the enormously complex signaling and transcriptional machinery of a cell to elicit qualitative transitions in its collective state. Single-cell RNA sequencing (scRNA-seq), which measures the distributions of possible transcriptional states in large populations of differentiating cells, provides an alternate view, in which development is marked by the variations of a myriad of genes. Here, we present a mathematical formalism for rigorously evaluating, from a dynamical systems perspective, whether scRNA-seq trajectories display statistical signatures consistent with bifurcations and, as a case study, pinpoint regions of multistability along the neutrophil branch of hematopoeitic differentiation. Additionally, we leverage the geometric features of linear instability to identify the low-dimensional phase plane in gene expression space within which the multistability unfolds, highlighting novel genetic players that are crucial for neutrophil differentiation. Broadly, we show that a dynamical systems treatment of scRNA-seq data provides mechanistic insights into the high-dimensional processes of cellular differentiation, taking a step toward systematic construction of mathematical models for transcriptomic dynamics.


Assuntos
Hematopoese , Transcriptoma , Transcriptoma/genética , Diferenciação Celular/genética , Hematopoese/genética , Perfilação da Expressão Gênica/métodos , Modelos Teóricos , Análise de Célula Única/métodos
2.
BMC Genomics ; 23(1): 723, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36273135

RESUMO

BACKGROUND: During embryogenesis, the developmental potential of initially pluripotent cells becomes progressively restricted as they transit to lineage restricted states. The pluripotent cells of Xenopus blastula-stage embryos are an ideal system in which to study cell state transitions during developmental decision-making, as gene expression dynamics can be followed at high temporal resolution. RESULTS: Here we use transcriptomics to interrogate the process by which pluripotent cells transit to four different lineage-restricted states: neural progenitors, epidermis, endoderm and ventral mesoderm, providing quantitative insights into the dynamics of Waddington's landscape. Our findings provide novel insights into why the neural progenitor state is the default lineage state for pluripotent cells and uncover novel components of lineage-specific gene regulation. These data reveal an unexpected overlap in the transcriptional responses to BMP4/7 and Activin signaling and provide mechanistic insight into how the timing of signaling inputs such as BMP are temporally controlled to ensure correct lineage decisions. CONCLUSIONS: Together these analyses provide quantitative insights into the logic and dynamics of developmental decision making in early embryos. They also provide valuable lineage-specific time series data following the acquisition of specific lineage states during development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Mesoderma , Endoderma/metabolismo , Ativinas/genética , Ativinas/metabolismo , Diferenciação Celular/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(33): 16192-16197, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346091

RESUMO

In cells, actin-binding proteins (ABPs) sort to different regions to establish F-actin networks with diverse functions, including filopodia used for cell migration and contractile rings required for cell division. Recent experimental work uncovered a competition-based mechanism that may facilitate spatial localization of ABPs: binding of a short cross-linker protein to 2 actin filaments promotes the binding of other short cross-linkers and inhibits the binding of longer cross-linkers (and vice versa). We hypothesize this sorting arises because F-actin is semiflexible and cannot bend over short distances. We develop a mathematical theory and lattice models encompassing the most important physical parameters for this process and use coarse-grained simulations with explicit cross-linkers to characterize and test our predictions. Our theory and data predict an explicit dependence of cross-linker separation on bundle polymerization rate. We perform experiments that confirm this dependence, but with an unexpected cross-over in dominance of one cross-linker at high growth rates to the other at slow growth rates, and we investigate the origin of this cross-over with further simulations. The nonequilibrium mechanism that we describe can allow cells to organize molecular material to drive biological processes, and our results can guide the choice and design of cross-linkers for engineered protein-based materials.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Proteínas dos Microfilamentos/química , Modelos Teóricos , Citoesqueleto de Actina/genética , Actinina/química , Actinina/genética , Actinas/genética , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Divisão Celular/genética , Movimento Celular/genética , Cinética , Proteínas dos Microfilamentos/genética , Ligação Proteica/genética , Transporte Proteico/genética , Pseudópodes/química , Pseudópodes/genética
4.
Proc Natl Acad Sci U S A ; 114(47): E10037-E10045, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114058

RESUMO

Molecular motors embedded within collections of actin and microtubule filaments underlie the dynamics of cytoskeletal assemblies. Understanding the physics of such motor-filament materials is critical to developing a physical model of the cytoskeleton and designing biomimetic active materials. Here, we demonstrate through experiments and simulations that the rigidity and connectivity of filaments in active biopolymer networks regulates the anisotropy and the length scale of the underlying deformations, yielding materials with variable contractility. We find that semiflexible filaments can be compressed and bent by motor stresses, yielding materials that undergo predominantly biaxial deformations. By contrast, rigid filament bundles slide without bending under motor stress, yielding materials that undergo predominantly uniaxial deformations. Networks dominated by biaxial deformations are robustly contractile over a wide range of connectivities, while networks dominated by uniaxial deformations can be tuned from extensile to contractile through cross-linking. These results identify physical parameters that control the forces generated within motor-filament arrays and provide insight into the self-organization and mechanics of cytoskeletal assemblies.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Proteínas de Transporte/química , Citoesqueleto/química , Filaminas/química , Proteínas dos Microfilamentos/química , Microtúbulos/química , Miosinas/química , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/metabolismo , Galinhas , Simulação por Computador , Citoesqueleto/ultraestrutura , Filaminas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Miosinas/metabolismo , Coelhos
5.
Soft Matter ; 14(37): 7740-7747, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30204203

RESUMO

Living cells dynamically modulate the local morphologies of their actin networks to perform biological functions, including force transduction, intracellular transport, and cell division. A major challenge is to understand how diverse structures of the actin cytoskeleton are assembled from a limited set of molecular building blocks. Here we study the spontaneous self-assembly of a minimal model of cytoskeletal materials, consisting of semiflexible actin filaments, crosslinkers, and molecular motors. Using coarse-grained simulations, we demonstrate that by changing concentrations and kinetics of crosslinkers and motors, as well as filament lengths, we can generate three distinct structural phases of actomyosin assemblies: bundled, polarity-sorted, and contracted. We introduce new metrics to distinguish these structural phases and demonstrate their functional roles. We find that the binding kinetics of motors and crosslinkers can be tuned to optimize contractile force generation, motor transport, and mechanical response. By quantitatively characterizing the relationships between the modes of cytoskeletal self-assembly, the resulting structures, and their functional consequences, our work suggests new principles for the design of active materials.


Assuntos
Actomiosina/metabolismo , Modelos Biológicos , Actinas/metabolismo , Elasticidade , Viscosidade
6.
Biophys J ; 113(2): 448-460, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28746855

RESUMO

Computer simulations can aid in understanding how collective materials properties emerge from interactions between simple constituents. Here, we introduce a coarse-grained model that enables simulation of networks of actin filaments, myosin motors, and cross-linking proteins at biologically relevant time and length scales. We demonstrate that the model qualitatively and quantitatively captures a suite of trends observed experimentally, including the statistics of filament fluctuations, and mechanical responses to shear, motor motilities, and network rearrangements. We use the simulation to predict the viscoelastic scaling behavior of cross-linked actin networks, characterize the trajectories of actin in a myosin motility assay, and develop order parameters to measure contractility of a simulated actin network. The model can thus serve as a platform for interpretation and design of cytoskeletal materials experiments, as well as for further development of simulations incorporating active elements.


Assuntos
Citoesqueleto de Actina/metabolismo , Simulação de Dinâmica Molecular , Miosinas/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Método de Monte Carlo , Dinâmica não Linear , Substâncias Viscoelásticas/metabolismo
7.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260433

RESUMO

Growth and turnover of actin filaments play a crucial role in the construction and maintenance of actin networks within cells. Actin filament growth occurs within limited space and finite subunit resources in the actin cortex. To understand how filament growth shapes the emergent architecture of actin networks, we developed a minimal agent-based model coupling filament mechanics and growth in a limiting subunit pool. We find that rapid filament growth induces kinetic trapping of highly bent actin filaments. Such collective bending patterns are long-lived, organized around nematic defects, and arises from competition between filament polymerization and bending elasticity. The stability of nematic defects and the extent of kinetic trapping are amplified by an increase in the abundance of the actin pool and by crosslinking the network. These findings suggest that kinetic trapping is a robust consequence of growth in crowded environments, providing a route to program shape memory in actin networks.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38775207

RESUMO

Growth and turnover of actin filaments play a crucial role in the construction and maintenance of actin networks within cells. Actin filament growth occurs within limited space and finite subunit resources in the actin cortex. To understand how filament growth shapes the emergent architecture of actin networks, we developed a minimal agent-based model coupling filament mechanics and growth in a limiting subunit pool. We find that rapid filament growth induces kinetic trapping of highly bent actin filaments. Such collective bending patterns are long-lived, organized around nematic defects, and arise from competition between filament polymerization and bending elasticity. The stability of nematic defects and the extent of kinetic trapping are amplified by an increase in the abundance of the actin pool and by crosslinking the network. These findings suggest that kinetic trapping is a robust consequence of growth in crowded environments, providing a route to program shape memory in actin networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA