Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(6): 3037-3084, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38437627

RESUMO

Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas/química , Solventes/química , Água/química , Polímeros
2.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216072

RESUMO

Hydroxymethylfurfural (5-HMF) is a key platform chemical, essential for the production of other chemicals, as well as fuels. Despite its importance, the production methods applied so far still lack in sustainability. In this work, acidic deep eutectic solvents (DES), acting both as solvent and catalyst, were studied for the conversion of fructose into 5-HMF using microwave-assisted reactions. These solvents were screened and optimized by varying the hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA). The bio-based solvent γ-valerolactone (GVL) was also applied as additive, leading to a boost in 5-HMF yield. Then, a response surface methodology was applied to further optimize operating conditions, such as reaction time, temperature and wt.% of added GVL. The highest 5-HMF yield attained, after optimization, was 82.4% at 130 °C, in 4 min of reaction time and with the addition of 10 wt.% of GVL. Moreover, a process for 5-HMF recovery and DES reuse was developed through the use of the bio-based solvent 2-methyltetrahydrofuran (2-Me-THF), allowing at least three cycles of 5-HMF production with minimal yield losses, while maintaining the purity of the isolated 5-HMF and the efficacy of the reaction media.


Assuntos
Solventes Eutéticos Profundos/química , Furaldeído/análogos & derivados , Catálise , Frutose/química , Furaldeído/química , Furanos/química , Ligação de Hidrogênio , Micro-Ondas , Temperatura
3.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328411

RESUMO

Neonicotinoids are systemic insecticides commonly used for pest control in agriculture and veterinary applications. Due to their widespread use, neonicotinoid insecticides (neonics) are found in different environmental compartments, including water, soils, and biota, in which their high toxicity towards non-target organisms is a matter of great concern. Given their widespread use and high toxicity, the development of strategies to remove neonics, while avoiding further environmental contamination is of high priority. In this work, ionic-liquid-based materials, comprising silica modified with tetraalkylammonium cations and the chloride anion, were explored as alternative adsorbent materials to remove four neonics insecticides, namely imidacloprid, acetamiprid, thiacloprid, and thiamethoxam, from aqueous media. These materials or supported ionic liquids (SILs) were first synthesized and chemically characterized and further applied in adsorption studies. It was found that the equilibrium concentration of the adsorbate in the solid phase decreases with the decrease in the SIL cation alkyl chain length, reinforcing the relevance of hydrophobic interactions between ionic liquids (ILs) and insecticides. The best-identified SIL for the adsorption of the studied insecticides corresponds to silica modified with propyltrioctylammonium chloride ([Si][N3888]Cl). The saturation of SILs was reached in 5 min or less, showing their fast adsorption rate towards all insecticides, in contrast with activated carbon (benchmark) that requires 40 to 60 min. The best fitting of the experimental kinetic data was achieved with the Pseudo Second-Order model, meaning that the adsorption process is controlled at the solid-liquid interface. On the other hand, the best fitting of the experimental isotherm data is given by the Freundlich isotherm model, revealing that multiple layers of insecticides onto the SIL surface may occur. The continuous removal efficiency of the best SIL ([Si][N3888]Cl) by solid-phase extraction was finally appraised, with the maximum adsorption capacity decreasing in the following sequence: imidacloprid > thiacloprid > thiamethoxam > acetamiprid. Based on real reported values, under ideal conditions, 1 g of [Si][N3888]Cl is able to treat at least 106 m3 of wastewater and water from wetland contaminated with the studied neonics. In summary, the enhanced adsorption capacity of SILs for a broad diversity of neonics was demonstrated, reinforcing the usefulness of these materials for their removal from aqueous matrices and thus contributing to preventing their introduction into the ecosystems and reducing their detrimental effects in the environment and human health.


Assuntos
Inseticidas , Líquidos Iônicos , Cloretos , Ecossistema , Humanos , Inseticidas/toxicidade , Nitrocompostos , Dióxido de Silício , Tiametoxam , Água
4.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268719

RESUMO

Liquid chromatography plays a central role in biomanufacturing, and, apart from its use as a preparative purification strategy, either in biopharmaceuticals or in fine chemicals industries, it is also very useful as an analytical tool for monitoring, assessing, and characterizing diverse samples. The present review gives an overview of the progress of the chromatographic supports that have been used in the purification of high-value products (e.g., small molecules, organic compounds, proteins, and nucleic acids). Despite the diversity of currently available chromatographic matrices, the interest in innovative biomolecules emphasizes the need for novel, robust, and more efficient supports and ligands with improved selectivity. Accordingly, ionic liquids (ILs) have been investigated as novel ligands in chromatographic matrices. Given herein is an extensive review regarding the different immobilization strategies of ILs in several types of supports, namely in silica, Sepharose, and polymers. In addition to depicting their synthesis, the main application examples of these supports are also presented. The multiple interactions promoted by ILs are critically discussed concerning the improved selectivity towards target molecules. Overall, the versatility of supported ILs is here considered a critical point to their exploitation as alternatives to the more conventional liquid chromatographic matrices used in bioseparation processes.


Assuntos
Líquidos Iônicos , Cromatografia Líquida/métodos , Líquidos Iônicos/química , Polímeros/química , Proteínas
5.
Molecules ; 27(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35164193

RESUMO

L-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme's single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse. Silica is a promising material due to its low-cost, biological compatibility, and tunable physicochemical characteristics if properly functionalized. Ionic liquids (ILs) are designer compounds that allow the tailoring of their physicochemical properties for a given task. If properly designed, bioconjugates combine the features of the selected ILs with those of the support used, enabling the simple recovery and reuse of the enzyme. In this work, silica-based supported ionic liquid-like phase (SSILLP) materials with quaternary ammoniums and chloride as the counterion were studied as novel supports for ASNase immobilization since it has been reported that ammonium ILs have beneficial effects on enzyme stability. SSILLP materials were characterized by elemental analysis and zeta potential. The immobilization process was studied and the pH effect, enzyme/support ratio, and contact time were optimized regarding the ASNase enzymatic activity. ASNase-SSILLP bioconjugates were characterized by ATR-FTIR. The bioconjugates displayed promising potential since [Si][N3444]Cl, [Si][N3666]Cl, and [Si][N3888]Cl recovered more than 92% of the initial ASNase activity under the optimized immobilization conditions (pH 8, 6 × 10-3 mg of ASNase per mg of SSILLP material, and 60 min). The ASNase-SSILLP bioconjugates showed more enhanced enzyme reuse than reported for other materials and immobilization methods, allowing five cycles of reaction while keeping more than 75% of the initial immobilized ASNase activity. According to molecular docking studies, the main interactions established between ASNase and SSILLP materials correspond to hydrophobic interactions. Overall, it is here demonstrated that SSILLP materials are efficient supports for ASNase, paving the way for their use in the pharmaceutical and food industries.


Assuntos
Asparaginase/química , Líquidos Iônicos/química , Dióxido de Silício/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Biotechnol Bioeng ; 118(7): 2514-2523, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764496

RESUMO

Novel liquid supports for enzyme immobilization and reuse based on aqueous biphasic systems (ABS) constituted by cholinium-based ionic liquids (ILs) and polymers for the degradation of dyes are here proposed. The biocatalytic reaction for dye decolorization using laccase occured in the biphasic medium, with the enzyme being "supported" in the IL-rich phase and the dye and degradation products being enriched in the polymer-rich phase. An initial screening of the laccase activity in aqueous solutions of ABS constituents, namely cholinium dihydrogen citrate ([Ch][DHC]), cholinium dihydrogen phosphate ([Ch][DHP]), cholinium acetate ([Ch][Acet]), polypropylene glycol 400 (PPG 400), polyethylene glycol 400 (PEG 400) and K2 HPO4 was carried out. Compared to the buffered control, a relative laccase activity of up to 170%, 257%, and 530% was observed with PEG 400, [Ch][DHP], and [Ch][DHC], respectively. These ABS constituents were then investigated for the in situ enzymatic biodegradation of the Remazol Brilliant Blue R (RBBR) dye. At the optimized conditions, the ABS constituted by PPG 400 at 46 wt% and [Ch][DHC] at 16 wt% leads to the complete degradation of the RBBR dye, further maintaining the enzyme activity. This ABS also allows an easy immobilization, recovery, and reuse of the biocatalyst for six consecutive reaction cycles, achieving a degradation yield of the dye of 96% in the last cycle. In summary, if properly designed, high enzymatic activities and reaction yields are obtained with ABS as liquid supports, while simultaneously overcoming the safety and environmental concerns of conventional organic solvents used in liquid-liquid heterogeneous reactions, thus representing more sustainable biocatalytic processes.


Assuntos
Corantes/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lacase/química , Polyporaceae/enzimologia
7.
Phys Chem Chem Phys ; 23(7): 4133-4140, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33595039

RESUMO

Although aqueous biphasic systems have been largely investigated in the separation and/or purification of biocompounds, their potential as reaction media to design integrated reaction-separation processes has been less explored. In this work aqueous biphasic systems (ABSs) composed of polypropylene glycol of molecular weight 400 g mol-1 (PPG 400) and different polyethylene glycols (PEGs) were characterized, and investigated for integrated reaction-separation processes, i.e. in the nucleophilic degradation of diazinon and further separation of reaction products by taking advantage of the lower-critical solution temperature (LCST) behaviour of these ABSs. The nucleophilic degradation of diazinon was carried out in the monophasic regime at 298 K, after which an increase in temperature (up to 313 K) allowed the product separation by two-phase formation (thermoreversible systems). The reaction kinetics and reaction pathways have been determined. The reaction kinetic increases as the PEG molecular weight decreases, with the half-life values obtained being competitive to those previously reported using volatile organic solvents as solvent media and significantly higher than under alkaline hydrolysis. One reaction pathway occurs in ABSs comprising PEGs of higher molecular weights, whereas in the ABS composed of PEG 600 two reaction pathways have been identified, meaning that the reaction pathways can be tailored by changing the PEG nature. ABSs formed by PEGs of lower molecular weights were identified as the most promising option to separate the pesticide degradation products by simply applying changes in temperature.

8.
Appl Microbiol Biotechnol ; 105(11): 4515-4534, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34059941

RESUMO

In the past decades, the production of biopharmaceuticals has gained high interest due to its great sensitivity, specificity, and lower risk of negative effects to patients. Biopharmaceuticals are mostly therapeutic recombinant proteins produced through biotechnological processes. In this context, L-asparaginase (L-asparagine amidohydrolase, L-ASNase (E.C. 3.5.1.1)) is a therapeutic enzyme that has been abundantly studied by researchers due to its antineoplastic properties. As a biopharmaceutical, L-ASNase has been used in the treatment of acute lymphoblastic leukemia (ALL), acute myeloblastic leukemia (AML), and other lymphoid malignancies, in combination with other drugs. Besides its application as a biopharmaceutical, this enzyme is widely used in food processing industries as an acrylamide mitigation agent and as a biosensor for the detection of L-asparagine in physiological fluids at nano-levels. The great demand for L-ASNase is supplied by recombinant enzymes from Escherichia coli and Erwinia chrysanthemi. However, production processes are associated to low yields and proteins associated to immunogenicity problems, which leads to the search for a better enzyme source. Considering the L-ASNase pharmacological and food importance, this review provides an overview of the current biotechnological developments in L-ASNase production and biochemical characterization aiming to improve the knowledge about its production. KEY POINTS: • Microbial enzyme applications as biopharmaceutical and in food industry • Biosynthesis process: from the microorganism to bioreactor technology • Enzyme activity and kinetic properties: crucial for the final application.


Assuntos
Antineoplásicos/metabolismo , Asparaginase/biossíntese , Asparagina , Biotecnologia , Dickeya chrysanthemi , Escherichia coli , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Recombinantes/biossíntese
9.
Molecules ; 26(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770869

RESUMO

Beer corresponds to a fermented alcoholic beverage composed of several components, including purine compounds. These molecules, when ingested by humans, can be catabolized into uric acid, contributing to uric acid's level increase in serum, which may lead to hyperuricemia and gout. To assure a proper management of this disease, physicians recommend restrictive dietary measures, particularly by avoiding the consumption of beer. Therefore, it is of relevance to develop efficient methods to remove purine compounds from alcoholic beverages such as beer. In this review, we provide an introduction on fermented alcoholic beverages, with emphasis on beer, as well as its purine compounds and their role in uric acid metabolism in the human body in relation to hyperuricemia and gout development. The several reported enzymatic, biological and adsorption methods envisaging purine compounds' removal are then reviewed. Some enzymatic and biological methods present drawbacks, which can be overcome by adsorption methods. Within adsorption methods, adsorbent materials, such as activated carbon or charcoal, have been reported and applied to beer or wort samples, showing an excellent capacity for adsorbing and removing purine compounds. Although the main topic of this review is on the removal of purine compounds from beer, other studies involving other matrices rather than beer or wort that are rich in purines are included, since they provide relevant clues on designing efficient removal processes. By ensuring the selective removal of purine compounds from this beverage, beer can be taken by hyperuricemic and gouty patients, avoiding restrictive dietary measures, while decreasing the related healthcare economic burden.


Assuntos
Cerveja/análise , Purinas/isolamento & purificação , Adsorção , Estrutura Molecular , Tamanho da Partícula , Purinas/química , Propriedades de Superfície
10.
Molecules ; 26(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205633

RESUMO

Green Chemistry has been defined by the EPA as the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances [...].

11.
Molecules ; 26(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885956

RESUMO

The addition of alkali metal halide salts to acidic deep eutectic solvents is here reported as an effective way of boosting xylan conversion into furfural. These salts promote an increase in xylose dehydration due to the cation and anion interactions with the solvent being a promising alternative to the use of harsh operational conditions. Several alkali metal halides were used as additives in the DES composed of cholinium chloride and malic acid ([Ch]Cl:Mal) in a molar ratio of 1:3, with 5 wt.% of water. These mixtures were then used as both solvent and catalyst to produce furfural directly from xylan through microwave-assisted reactions. Preliminary assays were carried out at 150 and 130 °C to gauge the effect of the different salts in furfural yields. A Response Surface Methodology was then applied to optimize the operational conditions. After an optimization of the different operating conditions, a maximum furfural yield of 89.46 ± 0.33% was achieved using 8.19% of lithium bromide in [Ch]Cl:Mal, 1:3; 5 wt.% water, at 157.3 °C and 1.74 min of reaction time. The used deep eutectic solvent and salt were recovered and reused three times, with 79.7% yield in the third cycle, and the furfural and solvent integrity confirmed.

12.
Molecules ; 26(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771021

RESUMO

Cholinium-based ionic liquids ([Ch]-based ILs) were investigated as electrolytes in the formation of aqueous biphasic systems (ABS) composed of polyethylene glycol (PEG) and sodium polyacrylate (NaPA) polymers. Both enhancement and decrease in the liquid-liquid demixing ability induced by electrolytes in PEG-NaPA aqueous biphasic systems were observed. It is shown that the ILs that most extensively partition to the PEG-rich phase tend to act as inorganic salts enhancing the two-phase formation ability, while those that display a more significant partition to the NaPA-rich phase decrease the ABS formation capacity. The gathered results allowed us to confirm the tailoring ability of ILs and to identify, for the first time, opposite effects induced by electrolytes on the PEG-NaPA ABS formation ability. The distribution of the electrolyte ions between the coexisting phases and the polyelectrolyte ion compartmentalization are key factors behind the formation of PEG-NaPA-based ABS.

13.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167474

RESUMO

Solubility, bioavailability, permeation, polymorphism, and stability concerns associated to solid-state pharmaceuticals demand for effective solutions. To overcome some of these drawbacks, ionic liquids (ILs) have been investigated as solvents, reagents, and anti-solvents in the synthesis and crystallization of active pharmaceutical ingredients (APIs), as solvents, co-solvents and emulsifiers in drug formulations, as pharmaceuticals (API-ILs) aiming liquid therapeutics, and in the development and/or improvement of drug-delivery-based systems. The present review focuses on the use of ILs in the pharmaceutical field, covering their multiple applications from pharmaceutical synthesis to drug delivery. The most relevant research conducted up to date is presented and discussed, together with a critical analysis of the most significant IL-based strategies in order to improve the performance of therapeutics and drug delivery systems.


Assuntos
Líquidos Iônicos/química , Preparações Farmacêuticas/química , Soluções Farmacêuticas/química , Disponibilidade Biológica , Química Farmacêutica/métodos , Cristalização/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Líquidos Iônicos/metabolismo , Líquidos Iônicos/farmacologia , Preparações Farmacêuticas/síntese química , Solubilidade/efeitos dos fármacos , Solventes/química
14.
Molecules ; 25(1)2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947898

RESUMO

Triterpenic acids (TTAs), known for their promising biological properties, can be found in different biomass sources and related by-products, such as Eucalyptus globulus bark, and have been extracted using organic volatile solvents such as dichloromethane. Recently, deep eutectic solvents (DES) have been identified as promising alternatives for the extraction of value-added compounds from biomass. In the present work, several hydrophobic DES were tested for the extraction of TTAs from E. globulus bark. Initial solubility studies revealed that DES based on menthol and thymol as the most promising solvents for these compounds given the highest solubilities obtained for ursolic acid (UA) at temperatures ranging from room temperature up to 90 °C. Accordingly, an eutectic mixture of menthol:thymol (1:2) was confirmed as the best candidate for the TTAs extraction from E. globulus outer bark, leading to extraction yields (weight of TTA per weight of biomass) at room temperature of 1.8 wt% for ursolic acid, 0.84 wt% for oleanolic acid and 0.30 wt% for betulinic acid. These values are significantly higher than those obtained with conventional organic solvents under similar conditions. The results obtained using these DES are promising for the recovery of TTAs for nutraceutical and pharmacological applications, while reinforcing the potential of DES as promising solvents to be applied in biorefinery processes.


Assuntos
Eucalyptus/química , Solventes/química , Triterpenos/química , Interações Hidrofóbicas e Hidrofílicas , Mentol/química , Temperatura , Timol/química , Ácido Ursólico
15.
Molecules ; 25(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796649

RESUMO

A shift to a bioeconomy development model has been evolving, conducting the scientific community to investigate new ways of producing chemicals, materials and fuels from renewable resources, i.e., biomass. Specifically, technologies that provide high performance and maximal use of biomass feedstocks into commodities with reduced environmental impact have been highly pursued. A key example comprises the extraction and/or dissolution of polysaccharides, one of the most abundant fractions of biomass, which still need to be improved regarding these processes' efficiency and selectivity parameters. In this context, the use of alternative solvents and the application of less energy-intensive processes in the extraction of polysaccharides might play an important role to reach higher efficiency and sustainability in biomass valorization. This review debates the latest achievements in sustainable processes for the extraction of polysaccharides from a myriad of biomass resources, including lignocellulosic materials and food residues. Particularly, the ability of ionic liquids (ILs) and deep eutectic solvents (DESs) to dissolve and extract the most abundant polysaccharides from natural sources, namely cellulose, chitin, starch, hemicelluloses and pectins, is scrutinized and the efficiencies between solvents are compared. The interaction mechanisms between solvent and polysaccharide are described, paving the way for the design of selective extraction processes. A detailed discussion of the work developed for each polysaccharide as well as the innovation degree and the development stage of dissolution and extraction technologies is presented. Their advantages and disadvantages are also identified, and possible synergies by integrating microwave- and ultrasound-assisted extraction (MAE and UAE) or a combination of both (UMAE) are briefly described. Overall, this review provides key information towards the design of more efficient, selective and sustainable extraction and dissolution processes of polysaccharides from biomass.


Assuntos
Biomassa , Líquidos Iônicos/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Solventes/química , Solubilidade
16.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321857

RESUMO

l-asparaginase (ASNase, EC 3.5.1.1) is an aminohydrolase enzyme with important uses in the therapeutic/pharmaceutical and food industries. Its main applications are as an anticancer drug, mostly for acute lymphoblastic leukaemia (ALL) treatment, and in acrylamide reduction when starch-rich foods are cooked at temperatures above 100 °C. Its use as a biosensor for asparagine in both industries has also been reported. However, there are certain challenges associated with ASNase applications. Depending on the ASNase source, the major challenges of its pharmaceutical application are the hypersensitivity reactions that it causes in ALL patients and its short half-life and fast plasma clearance in the blood system by native proteases. In addition, ASNase is generally unstable and it is a thermolabile enzyme, which also hinders its application in the food sector. These drawbacks have been overcome by the ASNase confinement in different (nano)materials through distinct techniques, such as physical adsorption, covalent attachment and entrapment. Overall, this review describes the most recent strategies reported for ASNase confinement in numerous (nano)materials, highlighting its improved properties, especially specificity, half-life enhancement and thermal and operational stability improvement, allowing its reuse, increased proteolysis resistance and immunogenicity elimination. The most recent applications of confined ASNase in nanomaterials are reviewed for the first time, simultaneously providing prospects in the described fields of application.


Assuntos
Asparaginase/química , Asparaginase/farmacologia , Biotecnologia , Asparaginase/isolamento & purificação , Técnicas Biossensoriais , Desenvolvimento de Medicamentos , Indústria Alimentícia , Humanos , Nanotecnologia/métodos , Engenharia de Proteínas , Relação Estrutura-Atividade
17.
Chem Rev ; 117(10): 6984-7052, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28151648

RESUMO

Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.


Assuntos
Produtos Biológicos/química , Fracionamento Químico/métodos , Líquidos Iônicos/química , Preparações Farmacêuticas/química , Aminoácidos/química , Técnicas de Química Analítica , Lipídeos/química , Extração Líquido-Líquido/métodos , Ácidos Nucleicos/química , Proteínas/química
18.
Biochem Eng J ; 141: 239-246, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30944543

RESUMO

Ionic liquids (ILs) as adjuvants in polymer-salt aqueous two-phase systems (ATPS) have been used to improve the extraction of biomolecules. However, the impact of ILs as adjuvants on the partition of biomolecules is still poorly understood. Previous works mostly focused on ATPS based on strong salting-out agents, which may mask the IL effect. In this work, ATPS formed by polyethylene glycol (PEG 400) and a weak salting-out salt ((NH4)2SO4) with a wide number of ILs as adjuvants (chloride-based combined with cholinium, imidazolium, pyrrolidinium, piperidinium, tetralkylammonium and tetralkylphosphonium cations) were investigated. The respective phase diagrams were determined, and the systems extraction performance for a wide range of biomolecules (phenolic compounds, alkaloids and amino acids) was investigated. The results obtained show that ILs as adjuvants in polymer-salt ATPS modulate the partition of biomolecules. In particular, more hydrophobic ILs significantly enhance the partition of more hydrophobic biomolecules to the PEG-rich phase (where the IL is enriched). Furthermore, the intensity of the IL effect is more pronounced when using weak salting-out agents. A linear correlation between the biomolecules and the ILs partition coefficients, and with the biomolecules octanol-water partition coefficients, was found. In most ATPS formed by polymers and salts using ILs as adjuvants, the biomolecules partition is driven by the ILs partition and by the difference in hydrophobicity between the coexisting phases.

19.
J Mol Liq ; 274: 740-745, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30936594

RESUMO

It is here reported a new concept based on solvatochromism to distinguish structurally similar compounds in aqueous solutions by the analysis of the stabilization of electronic excited states. The sensitivity of this approach to differentiate similar organic compounds, such as structural isomers or compound differing in the number of methylene groups, or proteins with conformational changes induced by being or not bound to cofactors, differing in two amino acids substitutions, or differing in their glycosylation profile, is demonstrated. The sensitivity of the proposed approach, based on the solvatochromic method, opens the path to its use as an auxiliary analytical tool in biomedical diagnosis/prognosis or in quality control of biologic-based drugs.

20.
Phys Chem Chem Phys ; 20(20): 14234-14241, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29761193

RESUMO

Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and conventional salts have been largely investigated and successfully used in separation processes, for which the determination of the corresponding ternary phase diagrams is a prerequisite. However, due the large number of ILs that can be prepared and their high structural versatility, it is impossible to experimentally cover and characterize all possible combinations of ILs and salts that may form ABS. The development of tools for the prediction and design of IL-based ABS is thus a crucial requirement. Based on a large compilation of experimental data, a correlation describing the formation of IL-based ABS is shown here, based on the hydrogen-bonding interaction energies of ILs (EHB) obtained by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) and the molar entropy of hydration of the salt ions. The ability of the proposed model to predict the formation of novel IL-based ABS is further ascertained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA