Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047018

RESUMO

Multidrug resistance (MDR) and induction of metastasis are some of the puzzles encountered during cancer chemotherapy. The MDR phenotype is associated with overexpression of ABC transporters, involved in drug efflux. Metastasis originates from the epithelial-mesenchymal transition (EMT), in which cells acquire a migratory phenotype, invading new tissues. ABC transporters' role during EMT is still elusive, though cells undergoing EMT exhibit enhanced ABCB1 expression. We demonstrated increased ABCB1 expression but no change in activity after TGF-ß-induced EMT in A549 cells. Moreover, ABCB1 inhibition by verapamil increased snail and fibronectin expression, an event associated with upregulation of ABCB1, evidencing coincident cell signaling pathways leading to ABCB1 and EMT-related markers transcription, rather than a direct effect of transport. Additionally, for the first time, increased ABCC1 expression and activity was observed after EMT, and use of ABCC1 inhibitors partially inhibited EMT-marker snail, although increased ABCC1 function translated into collateral sensibility to daunorubicin. More investigations must be done to evaluate the real benefits that the gain of ABC transporters might have on the process of metastasis. Considering ABCC1 is involved in the stress response, affecting intracellular GSH content and drug detoxification, this transporter could be used as a therapeutic target in cancer cells undergoing EMT.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fator de Crescimento Transformador beta
2.
Glycoconj J ; 39(2): 247-259, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156157

RESUMO

The characteristics that grant the most malignancy to cancer cells are the ability to evade apoptotic mechanisms and the capacity to migrate beyond the boundaries of the original tissue. Studies by our own group and others show that changes in glycosylation are now considered hallmarks of cancer cells and are also able to impact tumor malignancy. This study aims to evaluate changes in the glycosylation profile of the A549 lung cancer cells brought about by the induction of a MDR phenotype as well as investigate the relationship between drug resistance, the cell glycophenotype and EMT. We induced resistance by employing a continuous treatment with cisplatin. Our results demonstrate overexpression of ABC transporters as well as anti-apoptotic members of the Bcl-2 family, leading to a MDR phenotype. The cells also undergo a classic EMT process, displaying the iconic cadherin switch and increased of both total and oncofetal fibronectin, coupled with increased cell motility. We also managed to show changes in the expression of both glycosyltransferases and the glycan epitopes they are responsible for building. We also suggest that perhaps not only changes in cell sialylation are common during resistance induction but are essential to it.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Biomarcadores , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia
3.
J Infect Dis ; 224(10): 1672-1683, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34427670

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) can progress to severe pneumonia with respiratory failure and is aggravated by the deregulation of the immune system causing an excessive inflammation including the cytokine storm. METHODS: In this study, we report that severe acutely infected patients have high levels of both type-1 and type-2 cytokines. RESULTS: Our results show abnormal cytokine levels upon T-cell stimulation, in a nonpolarized profile. Furthermore, our findings indicate that this hyperactive cytokine response is associated with a significantly increased frequency of late-differentiated T cells with particular phenotype of effector exhausted/senescent CD28-CD57+ cells. Of note, we demonstrated for the first time an increased frequency of CD3+CD4+CD28-CD57+ T cells with expression of programmed death 1, one of the hallmarks of T-cell exhaustion. CONCLUSIONS: These findings reveal that COVID-19 is associated with acute immunodeficiency, especially within the CD4+ T-cell compartment, and points to possible mechanisms of loss of clonal repertoire and susceptibility to viral relapse and reinfection events.


Assuntos
COVID-19 , Antígenos CD28 , Estado Terminal , Citocinas/metabolismo , Humanos , SARS-CoV-2
4.
J Biol Chem ; 295(19): 6457-6471, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32229586

RESUMO

Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Glicoesfingolipídeos/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicoesfingolipídeos/genética , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Neoplasias/genética , Propanolaminas/farmacologia , Pirrolidinas/farmacologia
5.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207619

RESUMO

Trypanosoma cruzi is the etiologic agent for Chagas disease, which affects 6-7 million people worldwide. The biological diversity of the parasite reflects on inefficiency of benznidazole, which is a first choice chemotherapy, on chronic patients. ABC transporters that extrude xenobiotics, metabolites, and mediators are overexpressed in resistant cells and contribute to chemotherapy failure. An ABCC-like transport was identified in the Y strain and extrudes thiol-conjugated compounds. As thiols represent a line of defense towards reactive species, we aimed to verify whether ABCC-like transport could participate in the regulation of responses to stressor stimuli. In order to achieve this, ABCC-like activity was measured by flow cytometry using fluorescent substrates. The present study reveals the participation of glutathione and ceramides on ABCC-like transport, which are both implicated in stress. Hemin modulated the ABCC-like efflux which suggests that this protein might be involved in cellular detoxification. Additionally, all strains evaluated exhibited ABCC-like activity, while no ABCB1-like activity was detected. Results suggest that ABCC-like efflux is not associated with natural resistance to benznidazole, since sensitive strains showed higher activity than the resistant ones. Although benznidazole is not a direct substrate, ABCC-like efflux increased after prolonged drug exposure and this indicates that the ABCC-like efflux mediated protection against cell stress depends on the glutathione biosynthesis pathway.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Chagas/tratamento farmacológico , Glutationa/metabolismo , Nitroimidazóis/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Transporte Biológico , Doença de Chagas/parasitologia , Resistência a Medicamentos , Estresse Oxidativo/fisiologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/metabolismo
6.
Tumour Biol ; 42(9): 1010428320957506, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32914709

RESUMO

The development of the multidrug resistance phenotype is one of the major challenges faced in the treatment of cancer. The multidrug resistance phenotype is characterized by cross-resistance to drugs with different chemical structures and mechanisms of action. In this work, we hypothesized that the acquisition of resistance in cancer is accompanied by activation of the epithelial-to-mesenchymal transition process, where the tumor cell acquires a more mobile and invasive phenotype; a fundamental step in tumor progression and in promoting the invasion of other organs and tissues. In addition, it is known that atypical glycosylations are characteristic of tumor cells, being used as biomarkers. We believe that the acquisition of the multidrug resistance phenotype and the activation of epithelial-to-mesenchymal transition provoke alterations in the cell glycophenotype, which can be used as glycomarkers for chemoresistance and epithelial-to-mesenchymal transition processes. Herein, we induced the multidrug resistance phenotype in the PC-3 human prostate adenocarcinoma line through the continuous treatment with the drug paclitaxel. Our results showed that the induced cell multidrug resistance phenotype (1) acquired a mixed profile between epithelial and mesenchymal phenotypes and (2) modified the glycophenotype, showing an increase in the level of sialylation and in the number of branched glycans. Both mechanisms are described as indicators of poor prognosis.


Assuntos
Adenocarcinoma/patologia , Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Paclitaxel/farmacologia , Adenocarcinoma/metabolismo , Resistência a Múltiplos Medicamentos/fisiologia , Glicosilação , Humanos , Células PC-3 , Fenótipo
7.
Cell Immunol ; 334: 20-30, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30170688

RESUMO

This work aims to study the immunomodulation of B lymphocytes during L. amazonensis infection. We demonstrated in this study that follicular B cells from draining lymph nodes of infected wild type BALB/c mice are the major source of IL-10 during infection. We infected BALB/Xid mice that developed smaller lesions in comparison with the control, but the parasite load obtained from the infected tissues was similar in both groups. We observed a reduction in the number of follicular B cells from BALB/Xid mice in relation to WT mice and, consequently, lower levels of IgM, IgG, IgG1, IgG2a and IgG2b in the serum of BALB/Xid when compared with wild type mice. BALB/Xid mice also presented lower levels of IL-10 in the infected footpad, draining lymph nodes and in the spleen when compared with WT infected tissues. We did not detect differences in the number of IL-10 producing CD4+ and CD8+ T cells between WT and BALB/Xid mice; however, a strong reduction of IL-10 producing follicular B cells was noted in BALB/Xid mice. When analyzed together, our data indicate that B cells are related with lesion pathogenesis through the production of antibodies and IL-10.


Assuntos
Linfócitos B/imunologia , Imunomodulação/imunologia , Interleucina-10/imunologia , Leishmania mexicana/imunologia , Leishmaniose Cutânea/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/parasitologia , Imunoglobulinas/imunologia , Leishmaniose Cutânea/parasitologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Pele/imunologia , Pele/parasitologia , Baço/imunologia , Baço/parasitologia
8.
An Acad Bras Cienc ; 88(3): 1519-29, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27556227

RESUMO

One of the main obstacles to the treatment of Chagas disease is the genetic and phenotypical variance displayed by T. cruzi strains, resulting in differences in morphology, virulence, pathogenicity and drug susceptibility. To better understand the role of glycoconjungates in Chagas disease, we performed the molecular characterization of the O-linked chains from mucins and glycoinositolphospholipids (GIPLs) of the Silvio X10 clone 1 strain. We demonstrated the presence of a ß-galactofuranose (ß-Galf) unity linked to the O-4 position of the α-N-acetylglucosamine (α-GlcNAc)O-4 in Tc-mucins. GIPLs analysis showed that the lipidic portion is exclusively composed of ceramide and the PI-oligossacharidic portion contains the Man4(AEP)GlcN-Ins-PO4 core, substituted by ethanolamine-phosphate (EtNP) on the third distal mannose from inositol, which may or may not have a terminal ß Galf unity. These results confirm the classification of the Silvio X10/1 strain in group T. cruzi I. Again, it is noted that the study of T. cruzi surface glycoconjugates confirm the molecular results and the hypothesis that surface glycoconjugates may be interesting biomarker for the differentiation of trypanosomatid strains.


Assuntos
Glicoconjugados/química , Glicolipídeos/química , Mucinas/química , Fosfolipídeos/química , Trypanosoma cruzi/química , Trypanosoma cruzi/classificação , Genótipo
9.
Subcell Biochem ; 74: 181-201, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24264246

RESUMO

Trypanosoma cruzi trans-sialidase (TcTS) has intrigued researchers all over the world since it was shown that T. cruzi incorporates sialic acid through a mechanism independent of sialyltransferases. The enzyme has being involved in a vast myriad of functions in the biology of the parasite and in the pathology of Chagas' disease. At the structural level experiments trapping the intermediate with fluorosugars followed by peptide mapping, X-ray crystallography, molecular modeling and magnetic nuclear resonance have opened up a three-dimensional understanding of the way this enzyme works. Herein we review the multiple biological roles of TcTS and the structural studies that are slowly revealing the secrets underlining an efficient sugar transfer activity rather than simple hydrolysis by TcTS.


Assuntos
Glicoproteínas/química , Neuraminidase/química , Trypanosoma cruzi/enzimologia , Animais , Biocatálise , Cristalografia por Raios X , Glicoproteínas/metabolismo , Modelos Moleculares , Neuraminidase/metabolismo , Conformação Proteica , Especificidade por Substrato
10.
Proc Natl Acad Sci U S A ; 108(43): 17690-5, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22006308

RESUMO

The process termed "epithelial-mesenchymal transition" (EMT) was originally discovered in ontogenic development, and has been shown to be one of the key steps in tumor cell progression and metastasis. Recently, we showed that the expression of some glycosphingolipids (GSLs) is down-regulated during EMT in human and mouse cell lines. Here, we demonstrate the involvement of GalNAc-type (or mucin-type) O-glycosylation in EMT process, induced with transforming growth factor ß (TGF-ß) in human prostate epithelial cell lines. We found that: (i) TGF-ß treatment caused up-regulation of oncofetal fibronectin (onfFN), which is defined by mAb FDC6, and expressed in cancer or fetal cells/tissues, but not in normal adult cells/tissues. The reactivity of mAb FDC6 requires the addition of an O-glycan at a specific threonine, inside the type III homology connective segment (IIICS) domain of FN. (ii) This change is associated with typical EMT characteristics; i.e., change from epithelial to fibroblastic morphology, enhanced cell motility, decreased expression of a typical epithelial cell marker, E-cadherin, and enhanced expression of mesenchymal markers. (iii) TGF-ß treatment up-regulated mRNA level of FN containing the IIICS domain and GalNAc-T activity for the IIICS domain peptide substrate containing the FDC6 onfFN epitope. (iv) Knockdown of GalNAc-T6 and T3 inhibited TGF-ß-induced up-regulation of onfFN and EMT process. (v) Involvement of GSLs was not detectable with the EMT process in these cell lines. These findings indicate the important functional role of expression of onfFN, defined by site-specific O-glycosylation at IIICS domain, in the EMT process.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , RNA Mensageiro/metabolismo , Animais , Anticorpos Monoclonais , Western Blotting , Caderinas , Linhagem Celular , Primers do DNA/genética , Células Epiteliais , Técnicas de Silenciamento de Genes , Glicosilação , Humanos , Camundongos , N-Acetilgalactosaminiltransferases/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/farmacologia , Polipeptídeo N-Acetilgalactosaminiltransferase
11.
J Fungi (Basel) ; 10(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786693

RESUMO

Cryptococcus neoformans is a lethal fungus that primarily affects the respiratory system and the central nervous system. One of the main virulence factors is the capsule, constituted by the polysaccharides glucuronoxylomannan (GXM) and glucuronoxylomanogalactan (GXMGal). Polysaccharides are immunomodulators. One of the target cell populations for modulation are macrophages, which are part of the first line of defense and important for innate and adaptive immunity. It has been reported that macrophages can be modulated to act as a "Trojan horse," taking phagocytosed yeasts to strategic sites or having their machinery activation compromised. The scarcity of information on canine cryptococcosis led us to assess whether the purified capsular polysaccharides from C. neoformans would be able to modulate the microbicidal action of macrophages. In the present study, we observed that the capsular polysaccharides, GXM, GXMGal, or capsule total did not induce apoptosis in the DH82 macrophage cell line. However, it was possible to demonstrate that the phagocytic activity was decreased after treatment with polysaccharides. In addition, recovered yeasts from macrophages treated with polysaccharides after phagocytosis could be cultured, showing that their viability was not altered. The polysaccharides led to a reduction in ROS production and the mRNA expression of IL-12 and IL-6. We observed that GXMGal inhibits MHC class II expression and GXM reduces ERK phosphorylation. In contrast, GXMGal and GXM were able to increase the PPAR-γ expression. Furthermore, our data suggest that capsular polysaccharides can reduce the microbicidal activity of canine macrophages DH82.

12.
Microorganisms ; 12(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38674664

RESUMO

The SARS-CoV-2 P.1 variant, responsible for an outbreak in Manaus, Brazil, is distinguished by 12 amino acid differences in the S protein, potentially increasing its ACE-2 affinity and immune evasion capability. We investigated the innate immune response of this variant compared to the original B.1 strain, particularly concerning cytokine production. Blood samples from three severe COVID-19 patients were analyzed post-infection with both strains. Results showed no significant difference in cytokine production of mononuclear cells and neutrophils for either variant. While B.1 had higher cytopathogenicity, neither showed viral replication in mononuclear cells. Structural analyses of the S protein highlighted physicochemical variations, which might be linked to the differences in infectivity between the strains. Our studies point to the increased infectivity of P.1 could stem from altered immunogenicity and receptor-binding affinity.

13.
Molecules ; 18(6): 6366-82, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23760033

RESUMO

The work reported herein describes the synthesis and the assessment of the trypanocidal activity of thirteen new 1,2,4-triazole-3-thiones obtained from natural piperine, the main constituent of the dry fruits of Piper nigrum. It is part of a research program aiming to use abundant and easily available natural products as starting materials for the design and synthesis of new molecules potentially useful as antiparasitic drugs. The variously substituted triazole derivatives were synthesized from the natural amide in four steps with the use of microwave irradiation on overall yields ranging from 32% to 51%. The cyclohexyl substituted derivative showed the best trypanocidal profile on proliferative forms of Trypanosoma cruzi (Y strain), with IC50s = 18.3 and 8.87 mM against epimastigotes and amastigotes, respectively.


Assuntos
Alcaloides/química , Benzodioxóis/química , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Tionas/química , Triazóis/química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Desenho de Fármacos , Concentração Inibidora 50 , Estrutura Molecular , Testes de Sensibilidade Parasitária , Tionas/síntese química , Triazóis/síntese química , Tripanossomicidas/síntese química , Trypanosoma cruzi/efeitos dos fármacos
14.
Microorganisms ; 11(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110450

RESUMO

Parasite-host interactions depend on a complex interplay between the metabolism of the parasite, their antigens, and the host immune response system [...].

15.
Matrix Biol ; 118: 47-68, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36882122

RESUMO

Changes in protein glycosylation are a hallmark of transformed cells and modulate numerous phenomena associated with cancer progression, such as the acquisition of multidrug resistance (MDR) phenotype. Different families of glycosyltransferases and their products have already been described as possible modulators of the MDR phenotype. Among the glycosyltransferases intensively studied in cancer research, UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase-6 (pp-GalNAc-T6), which is widely expressed in many organs and tissues, stands out. Its influence in several events associated with kidney, oral, pancreatic, renal, lung, gastric and breast cancer progression has already been described. However, its participation in the MDR phenotype has never been studied. Here, we demonstrate that human breast adenocarcinoma MCF-7 MDR cell lines, generated by chronic exposure to doxorubicin, in addition to exhibiting increased expression of proteins belonging to the ABC superfamily (ABCC1 and ABCG2), and anti-apoptotic proteins (Blcl-2 and Bcl-xL), also present high expression of pp-GalNAc-T6, the enzyme currently proposed as the main responsible for the biosynthesis of oncofetal fibronectin (onf-FN), a major extracellular matrix component expressed by cancer cells and embryonic tissues, but absent in healthy cells. Our results show that onf-FN, which is generated by the addition of a GalNAc unit at a specific threonine residue inside the type III homology connective segment (IIICS) domain of FN, is strongly upregulated during the acquisition of the MDR phenotype. Also, the silencing of pp-GalNAc-T6, not only compromises the expression of the oncofetal glycoprotein, but also made the MDR cells more sensitive to all anticancer drugs tested, partially reversing the MDR phenotype. Taken together, our results demonstrate for the first time the upregulation of the O-glycosylated oncofetal fibronectin, as well as the direct participation of pp-GalNAc-T6 during the acquisition of a MDR phenotype in a breast cancer model, giving credence to the hypothesis that in transformed cells, glycosyltransferases and/or their products, such as unusual extracellular matrix glycoproteins can be used as potential therapeutic targets for the treatment of cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Glicosilação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Glicosiltransferases , Resistência a Múltiplos Medicamentos/genética
16.
Braz J Microbiol ; 54(2): 907-919, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36840821

RESUMO

Invasive fungal infections (IFI) are responsible for a large number of annual deaths. Most cases are closely related to patients in a state of immunosuppression, as is the case of patients undergoing chemotherapy. Cancer patients are severely affected by the worrisome proportions that an IFI can take during cancer progression, especially in an already immunologically and metabolically impaired patient. There is scarce knowledge about strategies to mitigate cancer progression in these cases, beyond conventional treatment with antifungal drugs with a narrow therapeutic range. However, in recent years, ample evidence has surfaced describing the possible interferences that IFI may have both on the progression of pre-existing cancers and in the induction of newly transformed cells. The leading gambit for modulation of tumor progression comes from the ability of fungal virulence factors to modulate the host's immune system, since they are found in considerable concentrations in the tumor microenvironment during infection. In this context, cryptococcosis is of particular concern, since the main virulence factor of the pathogenic yeast is its polysaccharide capsule, which carries constituents with high immunomodulatory properties and cytotoxic potential. Therefore, we open a discussion on what has already been described regarding the progression of cryptococcosis in the context of cancer progression, and the possible implications that fungal glycan structures may take in both cancer development and progression.


Assuntos
Criptococose , Cryptococcus neoformans , Neoplasias , Humanos , Criptococose/microbiologia , Polissacarídeos , Antifúngicos , Fatores de Virulência , Microambiente Tumoral
17.
Life (Basel) ; 13(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37109592

RESUMO

The interactions between cell and cellular matrix confers plasticity to each body tissue, influencing the cellular migratory capacity. Macrophages rely on motility to promote their physiological function. These phagocytes are determinant for the control of invasive infections, and their immunological role largely depends on their ability to migrate and adhere to tissue. Therefore, they interact with the components of the extracellular matrix through their adhesion receptors, conferring morphological modifications that change their shape during migration. Nevertheless, the need to use in vitro cell growth models with the conditioning of three-dimensional synthetic matrices to mimic the dynamics of cell-matrix interaction has been increasingly studied. This becomes more important to effectively understand the changes occurring in phagocyte morphology in the context of infection progression, such as in Chagas disease. This disease is caused by the intracellular pathogen Trypanosoma cruzi, capable of infecting macrophages, determinant cells in the anti-trypanosomatid immunity. In the present study, we sought to understand how an in vitro extracellular matrix model interferes with T. cruzi infection in macrophages. Using different time intervals and parasite ratios, we evaluated the cell morphology and parasite replication rate in the presence of 3D collagen I matrix. Nevertheless, microscopy techniques such as scanning electron microscopy were crucial to trace macrophage-matrix interactions. In the present work, we demonstrated for the first time that the macrophage-matrix interaction favors T. cruzi in vitro replication and the release of anti-inflammatory cytokines during macrophage infection, in addition to drastically altering the morphology of the macrophages and promoting the formation of migratory macrophages.

18.
Medicines (Basel) ; 10(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37367731

RESUMO

Cancer cells are characterized by metabolic reprogramming, which enables their survival in of-ten inhospitable conditions. A very well-documented example that has gained attraction in re-cent years and is already considered a hallmark of transformed cells is the reprogramming of carbohydrate metabolism. Such a feature, in association with the differential expression of en-zymes involved in the biosynthesis of glycoconjugates, generically known as glycosyltransfer-ases, contributes to the expression of structurally atypical glycans when compared to those ex-pressed in healthy tissues. The latest studies have demonstrated that glycophenotypic alterations are capable of modulating multifactorial events essential for the development and/or progres-sion of the disease. Herein, we will address the importance of glycobiology in modern medi-cine, focusing on the ability of unusual/truncated O-linked glycans to modulate two complex and essential phenomena for cancer progression: the acquisition of the multidrug resistance (MDR) phenotype and the activation of molecular pathways associated with the epithelial-mesenchymal transition (EMT) process, an event deeply linked with cancer metastasis.

19.
Medicines (Basel) ; 10(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36827215

RESUMO

In this article, we discuss the main aspects regarding the recognition of cell surface glycoconjugates and the immunomodulation of responses against the progression of certain pathologies, such as cancer and infectious diseases. In the first part, we talk about different aspects of glycoconjugates and delve deeper into the importance of N-glycans in cancer immunotherapy. Then, we describe two important lectin families that have been very well studied in the last 20 years. Examples include the sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), and galectins. Finally, we discuss a topic that needs to be better addressed in the field of glycoimmunology: the impact of oncofetal antigens on the cells of the immune system. New findings in this area are of great importance for advancement, especially in the field of oncology, since it is already known that cellular interactions mediated by carbohydrate-carbohydrate and/or carbohydrate proteins are able to modulate the progression of different types of cancer in events that compromise the functionality of the immune responses.

20.
Immunol Res ; 71(1): 92-104, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36197587

RESUMO

Macrophage (Mϕ) polarization is an essential phenomenon for the maintenance of homeostasis and tissue repair, and represents the event by which Mϕ reach divergent functional phenotypes as a result to specific stimuli and/or microenvironmental signals. Mϕ can be polarized into two main phenotypes, M1 or classically activated and M2 or alternatively activated. These two categories diverge in many aspects, such as secreted cytokines, markers of cell surface, and biological functions. Over the last 10 years, many potential markers have been proposed for both M1 and M2 human Mϕ. However, there is scarce information regarding the glycophenotype adopted by these cells. Here, we show that M2- but not M1-polarized Mϕ expresses high levels of an unusual glycoform of fibronectin (FN), named O-glycosylated oncofetal FN (onf-FN), found in fetal/cancer cells, but not in healthy tissues. The onf-FN expression was confirmed in vitro by Western blot and real-time RT-qPCR in primary and cell line monocyte-derived Mϕ. onf-FN was induced by IL-4 and IL-13, but not by pro-inflammatory stimuli (LPS and INF-γ). RNA and protein analysis clearly demonstrated that it is specifically associated with the M2 polarization. In conclusion, we show by the first time that O-glycosylated onf-FN is expressed by M2-polarized Mϕ.


Assuntos
Fibronectinas , Macrófagos , Humanos , Fibronectinas/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA