Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
2.
Biomolecules ; 11(7)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34356681

RESUMO

Novel antimicrobial strategies are urgently required because of the rising threat of multi drug resistant bacterial strains and the infections caused by them. Among the available target structures, the so-called penicillin binding proteins are of particular interest, owing to their good accessibility in the periplasmic space, and the lack of homologous proteins in humans, reducing the risk of side effects of potential drugs. In this report, we focus on the interaction of the innovative ß-lactam antibiotic AIC499 with penicillin binding protein 3 (PBP3) from Escherichia coli and Pseudomonas aeruginosa. This recently developed monobactam displays broad antimicrobial activity, against Gram-negative strains, and improved resistance to most classes of ß-lactamases. By analyzing crystal structures of the respective complexes, we were able to explore the binding mode of AIC499 to its target proteins. In addition, the apo structures determined for PBP3, from P. aeruginosa and the catalytic transpeptidase domain of the E. coli orthologue, provide new insights into the dynamics of these proteins and the impact of drug binding.


Assuntos
Monobactamas/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Monobactamas/química , Proteínas de Ligação às Penicilinas/genética , Conformação Proteica , Pseudomonas aeruginosa
3.
Antibiotics (Basel) ; 10(5)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064358

RESUMO

The alarming threat of the spread of multidrug resistant bacteria currently leaves clinicians with very limited options to combat infections, especially those from Gram-negative bacteria. Hence, innovative strategies to deliver the next generation of antibacterials are urgently needed. Penicillin binding proteins (PBPs) are proven targets inhibited by ß-lactam antibiotics. To discover novel, non-ß-lactam inhibitors against PBP3 of Pseudomonas aeruginosa, we optimised a fluorescence assay based on a well-known thioester artificial substrate and performed a target screening using a focused protease-targeted library of 2455 compounds, which led to the identification of pyrrolidine-2,3-dione as a potential scaffold to inhibit the PBP3 target. Further chemical optimisation using a one-pot three-component reaction protocol delivered compounds with excellent target inhibition, initial antibacterial activities against P. aeruginosa and no apparent cytotoxicity. Our investigation revealed the key structural features; for instance, 3-hydroxyl group (R2) and a heteroaryl group (R1) appended to the N-pyrroldine-2,3-dione via methylene linker required for target inhibition. Overall, the discovery of the pyrrolidine-2,3-dione class of inhibitors of PBP3 brings opportunities to target multidrug-resistant bacterial strains and calls for further optimisation to improve antibacterial activity against P. aeruginosa.

4.
J Phys Chem B ; 122(15): 4219-4230, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29595969

RESUMO

Sequence alignment of the four WW domains from human Nedd4-1 (neuronal precursor cell expressed developmentally down-regulated gene 4-1) reveals that the highest sequence diversity exists in loop I. Three residues in this type I ß-turn interact with the PPxY motif of the human epithelial Na+ channel (hENaC) subunits, indicating that peptide affinity is defined by the loop I sequence. The third WW domain (WW3*) has the highest ligand affinity and unlike the other three hNedd4-1 WW domains or other WW domains studied contains the highly statistically preferred proline at the ( i + 1) position found in ß-turns. In this report, molecular dynamics simulations and experimental data were combined to characterize loop I stability and dynamics. Exchange of the proline to the equivalent residue in WW4 (Thr) results in the presence of a predominantly open seven residue Ω loop rather than the type I ß-turn conformation for the wild-type apo-WW3*. In the presence of the ligand, the structure of the mutated loop I is locked into a type I ß-turn. Thus, proline in loop I ensures a stable peptide binding-competent ß-turn conformation, indicating that amino acid sequence modulates local flexibility to tune binding preferences and stability of dynamic interaction motifs.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/química , Prolina/química , Sítios de Ligação , Humanos , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA