Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(10): e1009475, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624014

RESUMO

Evolution is often an obstacle to the engineering of stable biological systems due to the selection of mutations inactivating costly gene circuits. Gene overlaps induce important constraints on sequences and their evolution. We show that these constraints can be harnessed to increase the stability of costly genes by purging loss-of-function mutations. We combine computational and synthetic biology approaches to rationally design an overlapping reading frame expressing an essential gene within an existing gene to protect. Our algorithm succeeded in creating overlapping reading frames in 80% of E. coli genes. Experimentally, scoring mutations in both genes of such overlapping construct, we found that a significant fraction of mutations impacting the gene to protect have a deleterious effect on the essential gene. Such an overlap thus protects a costly gene from removal by natural selection by associating the benefit of this removal with a larger or even lethal cost. In our synthetic constructs, the overlap converts many of the possible mutants into evolutionary dead-ends, reducing the evolutionary potential of the system and thus increasing its stability over time.


Assuntos
Genes Essenciais/genética , Engenharia Genética/métodos , Mutação/genética , Biologia Sintética/métodos , Algoritmos , Escherichia coli/genética , Evolução Molecular , Genômica , Fases de Leitura/genética , Análise de Sequência de DNA
2.
PLoS Biol ; 16(5): e2005056, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750784

RESUMO

The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm.


Assuntos
Evolução Biológica , Taxa de Mutação , Estresse Fisiológico , Escherichia coli , Testes de Sensibilidade Microbiana , Modelos Genéticos , Dinâmica Populacional
3.
Artif Life ; 26(2): 274-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32271631

RESUMO

Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.


Assuntos
Algoritmos , Biologia Computacional , Criatividade , Vida , Evolução Biológica
4.
PLoS Comput Biol ; 13(9): e1005745, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28915236

RESUMO

Multiple treatment strategies are available for empiric antibiotic therapy in hospitals, but neither clinical studies nor theoretical investigations have yielded a clear picture when which strategy is optimal and why. Extending earlier work of others and us, we present a mathematical model capturing treatment strategies using two drugs, i.e the multi-drug therapies referred to as cycling, mixing, and combination therapy, as well as monotherapy with either drug. We randomly sample a large parameter space to determine the conditions determining success or failure of these strategies. We find that combination therapy tends to outperform the other treatment strategies. By using linear discriminant analysis and particle swarm optimization, we find that the most important parameters determining success or failure of combination therapy relative to the other treatment strategies are the de novo rate of emergence of double resistance in patients infected with sensitive bacteria and the fitness costs associated with double resistance. The rate at which double resistance is imported into the hospital via patients admitted from the outside community has little influence, as all treatment strategies are affected equally. The parameter sets for which combination therapy fails tend to fall into areas with low biological plausibility as they are characterised by very high rates of de novo emergence of resistance to both drugs compared to a single drug, and the cost of double resistance is considerably smaller than the sum of the costs of single resistance.


Assuntos
Antibacterianos , Biologia Computacional/métodos , Farmacorresistência Bacteriana , Quimioterapia Combinada , Hospitais , Modelos Biológicos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Análise Discriminante , Humanos
5.
PLoS Comput Biol ; 9(11): e1003339, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278000

RESUMO

When cooperation has a direct cost and an indirect benefit, a selfish behavior is more likely to be selected for than an altruistic one. Kin and group selection do provide evolutionary explanations for the stability of cooperation in nature, but we still lack the full understanding of the genomic mechanisms that can prevent cheater invasion. In our study we used Aevol, an agent-based, in silico genomic platform to evolve populations of digital organisms that compete, reproduce, and cooperate by secreting a public good for tens of thousands of generations. We found that cooperating individuals may share a phenotype, defined as the amount of public good produced, but have very different abilities to resist cheater invasion. To understand the underlying genetic differences between cooperator types, we performed bio-inspired genomics analyses of our digital organisms by recording and comparing the locations of metabolic and secretion genes, as well as the relevant promoters and terminators. Association between metabolic and secretion genes (promoter sharing, overlap via frame shift or sense-antisense encoding) was characteristic for populations with robust cooperation and was more likely to evolve when secretion was costly. In mutational analysis experiments, we demonstrated the potential evolutionary consequences of the genetic association by performing a large number of mutations and measuring their phenotypic and fitness effects. The non-cooperating mutants arising from the individuals with genetic association were more likely to have metabolic deleterious mutations that eventually lead to selection eliminating such mutants from the population due to the accompanying fitness decrease. Effectively, cooperation evolved to be protected and robust to mutations through entangled genetic architecture. Our results confirm the importance of second-order selection on evolutionary outcomes, uncover an important genetic mechanism for the evolution and maintenance of cooperation, and suggest promising methods for preventing gene loss in synthetically engineered organisms.


Assuntos
Comportamento Cooperativo , Evolução Molecular , Genoma/genética , Modelos Biológicos , Biologia Computacional , Simulação por Computador , Redes e Vias Metabólicas , Interações Microbianas , Mutação , Fenótipo
6.
ISME Commun ; 2(1): 80, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37938266

RESUMO

Stress is thought to increase mutation rate and thus to accelerate evolution. In the context of antibiotic resistance, sub-inhibitory treatments could then lead to enhanced evolvability, thereby fuelling the adaptation of pathogens. Combining wet-lab experiments, stochastic simulations and a meta-analysis of the literature, we found that the increase in mutation rates triggered by antibiotic treatments is often cancelled out by reduced population size, resulting in no overall increase in genetic diversity. A careful analysis of the effect of ecological factors on genetic diversity showed that the potential for regrowth during recovery phase after treatment plays a crucial role in evolvability, being the main factor associated with increased genetic diversity in experimental data.

7.
Evolution ; 71(7): 1802-1814, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28568812

RESUMO

Switching rate between cooperating and non-cooperating genotypes is a crucial social evolution factor, often neglected by game theory-inspired theoretical and experimental frameworks. We show that the evolution of alleles increasing the mutation or phenotypic switching rates toward cooperation is in itself a social dilemma. Although cooperative offspring are often unlikely to reproduce, due to high cost of cooperation, they can be seen both as a living public good and a part of the extended parental phenotype. The competition between individuals that generate cooperators and ones that do not is often more relevant than the competition between cooperators and non-cooperators. The dilemma of second-order cooperation we describe relates directly to eusociality, but can be also interpreted as a division of labor or a soma-germline distinction. The results of our simulations shine a new light on what Darwin had already termed a "special difficulty" of evolutionary theory and describe a novel type of cooperation dynamics.


Assuntos
Comportamento Cooperativo , Teoria dos Jogos , Mutação , Animais , Evolução Biológica , Relações Interpessoais
8.
Cell Rep ; 17(1): 46-57, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27681420

RESUMO

A better understanding of the impact of antibiotics on bacteria is required to increase the efficiency of antibiotic treatments and to slow the emergence of resistance. Using Escherichia coli, we examined how bacteria exposed to sublethal concentrations of ampicillin adjust gene expression patterns and metabolism to simultaneously deal with the antibiotic-induced damage and maintain rapid growth. We found that the treated cells increased energy production, as well as translation and macromolecular repair and protection. These responses are adaptive, because they confer increased survival not only to lethal ampicillin treatment but also to non-antibiotic lethal stresses. This robustness is modulated by nutrient availability. Because different antibiotics and other stressors induce the same set of responses, we propose that it constitutes a general core hormetic stress response. It is plausible that this response plays an important role in the robustness of bacteria exposed to antibiotic treatments and constant environmental fluctuations in natural environments.


Assuntos
Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Hormese/genética , Alquilantes/farmacologia , Ampicilina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Oxidantes/farmacologia , Biossíntese de Proteínas , Proteoma/genética , Proteoma/metabolismo , Estresse Fisiológico/genética
9.
Evolution ; 69(3): 788-802, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25639379

RESUMO

Natural cooperative systems take many forms, ranging from one-dimensional cyanobacteria arrays to fractal-like biofilms. We use in silico experimental systems to study a previously overlooked factor in the evolution of cooperation, physical shape of the population. We compare the emergence and maintenance of cooperation in populations of digital organisms that inhabit bulky (100 × 100 cells) or slender (4 × 2500) toroidal grids. Although more isolated subpopulations of secretors in a slender population could be expected to favor cooperation, we find the opposite: secretion evolves to higher levels in bulky populations. We identify the mechanistic explanation for the shape effect by analyzing the lifecycle and dynamics of cooperator patches, from their emergence and growth, to invasion by noncooperators and extinction. Because they are constrained by the population shape, the cooperator patches expand less in slender than in bulky populations, leading to fewer cooperators, less public good secretion, and generally lower cooperation. The patch dynamics and mechanisms of shape effect are robust across several digital cooperation systems and independent of the underlying basis for cooperation (public good secretion or a cooperation game). Our results urge for a greater consideration of population shape in the study of the evolution of cooperation across experimental and modeling systems.


Assuntos
Evolução Biológica , Modelos Biológicos , Ecossistema , Aptidão Genética , Genótipo , Fenótipo , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA