Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(5): 1415-1429.e19, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863252

RESUMO

Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/metabolismo , Doenças do Sistema Imunitário/genética , Alelos , Diferenciação Celular , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/patologia , Humanos , Doenças do Sistema Imunitário/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , População Branca/genética
2.
Blood ; 141(18): 2261-2274, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790527

RESUMO

Pathogenic missense variants in SLFN14, which encode an RNA endoribonuclease protein that regulates ribosomal RNA (rRNA) degradation, are known to cause inherited thrombocytopenia (TP) with impaired platelet aggregation and adenosine triphosphate secretion. Despite mild laboratory defects, the patients displayed an obvious bleeding phenotype. However, the function of SLFN14 in megakaryocyte (MK) and platelet biology remains unknown. This study aimed to model the disease in an immortalized MK cell line (imMKCL) and to characterize the platelet transcriptome in patients with the SLFN14 K219N variant. MK derived from heterozygous and homozygous SLFN14 K219N imMKCL and stem cells of blood from patients mainly presented with a defect in proplatelet formation and mitochondrial organization. SLFN14-defective platelets and mature MK showed signs of rRNA degradation; however, this was absent in undifferentiated imMKCL cells and granulocytes. Total platelet RNA was sequenced in 2 patients and 19 healthy controls. Differential gene expression analysis yielded 2999 and 2888 significantly (|log2 fold change| >1, false discovery rate <0.05) up- and downregulated genes, respectively. Remarkably, these downregulated genes were not enriched in any biological pathway, whereas upregulated genes were enriched in pathways involved in (mitochondrial) translation and transcription, with a significant upregulation of 134 ribosomal protein genes (RPGs). The upregulation of mitochondrial RPGs through increased mammalian target of rapamycin complex 1 (mTORC1) signaling in SLFN14 K219N MK seems to be a compensatory response to rRNA degradation. mTORC1 inhibition with rapamycin resulted in further enhanced rRNA degradation in SLFN14 K219N MK. Taken together, our study indicates dysregulation of mTORC1 coordinated ribosomal biogenesis is the disease mechanism for SLFN14-related TP.


Assuntos
Trombocitopenia , Humanos , Trombocitopenia/patologia , Plaquetas/metabolismo , Ribossomos/metabolismo , Megacariócitos/patologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA/metabolismo
3.
Blood ; 142(24): 2055-2068, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37647632

RESUMO

Rare genetic diseases affect millions, and identifying causal DNA variants is essential for patient care. Therefore, it is imperative to estimate the effect of each independent variant and improve their pathogenicity classification. Our study of 140 214 unrelated UK Biobank (UKB) participants found that each of them carries a median of 7 variants previously reported as pathogenic or likely pathogenic. We focused on 967 diagnostic-grade gene (DGG) variants for rare bleeding, thrombotic, and platelet disorders (BTPDs) observed in 12 367 UKB participants. By association analysis, for a subset of these variants, we estimated effect sizes for platelet count and volume, and odds ratios for bleeding and thrombosis. Variants causal of some autosomal recessive platelet disorders revealed phenotypic consequences in carriers. Loss-of-function variants in MPL, which cause chronic amegakaryocytic thrombocytopenia if biallelic, were unexpectedly associated with increased platelet counts in carriers. We also demonstrated that common variants identified by genome-wide association studies (GWAS) for platelet count or thrombosis risk may influence the penetrance of rare variants in BTPD DGGs on their associated hemostasis disorders. Network-propagation analysis applied to an interactome of 18 410 nodes and 571 917 edges showed that GWAS variants with large effect sizes are enriched in DGGs and their first-order interactors. Finally, we illustrate the modifying effect of polygenic scores for platelet count and thrombosis risk on disease severity in participants carrying rare variants in TUBB1 or PROC and PROS1, respectively. Our findings demonstrate the power of association analyses using large population datasets in improving pathogenicity classifications of rare variants.


Assuntos
Estudo de Associação Genômica Ampla , Trombose , Humanos , Bancos de Espécimes Biológicos , Hemostasia , Hemorragia/genética , Doenças Raras
4.
Genet Med ; 26(5): 101097, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334070

RESUMO

PURPOSE: Pathogenic variants of FIG4 generate enlarged lysosomes and neurological and developmental disorders. To identify additional genes regulating lysosomal volume, we carried out a genome-wide activation screen to detect suppression of enlarged lysosomes in FIG4-/- cells. METHODS: The CRISPR-a gene activation screen utilized sgRNAs from the promoters of protein-coding genes. Fluorescence-activated cell sorting separated cells with correction of the enlarged lysosomes from uncorrected cells. Patient variants of SLC12A9 were identified by exome or genome sequencing and studied by segregation analysis and clinical characterization. RESULTS: Overexpression of SLC12A9, a solute co-transporter, corrected lysosomal swelling in FIG4-/- cells. SLC12A9 (NP_064631.2) colocalized with LAMP2 at the lysosome membrane. Biallelic variants of SLC12A9 were identified in 3 unrelated probands with neurodevelopmental disorders. Common features included intellectual disability, skeletal and brain structural abnormalities, congenital heart defects, and hypopigmented hair. Patient 1 was homozygous for nonsense variant p.(Arg615∗), patient 2 was compound heterozygous for p.(Ser109Lysfs∗20) and a large deletion, and proband 3 was compound heterozygous for p.(Glu290Glyfs∗36) and p.(Asn552Lys). Fibroblasts from proband 1 contained enlarged lysosomes that were corrected by wild-type SLC12A9 cDNA. Patient variant p.(Asn552Lys) failed to correct the lysosomal defect. CONCLUSION: Impaired function of SLC12A9 results in enlarged lysosomes and a recessive disorder with a recognizable neurodevelopmental phenotype.


Assuntos
Lisossomos , Transtornos do Neurodesenvolvimento , Simportadores de Cloreto de Sódio-Potássio , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Alelos , Mutação com Perda de Função/genética , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo , Simportadores de Cloreto de Sódio-Potássio/genética
5.
Dev Psychobiol ; 66(5): e22496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689124

RESUMO

The current study explored longitudinally whether oxytocin receptor gene methylation (OXTRm) changes moderated the association between parental sensitivity changes and children's attachment changes over three waves. Six hundred six Flemish children (10-12 years, 42.8%-44.8% boys) completed attachment measures and provided salivary OXTRm data on seven CpG sites. Their parents reported their sensitive parenting. Results suggest that OXTRm changes hardly link to attachment (in)security changes after the age of 10. Some support was found for interaction effects between parental sensitivity changes and OXTRm changes on attachment changes over time. Effects suggest that for children with increased OXTRm in the promotor region and decreased methylation in the inhibitor region over time, increased parental sensitivity was associated with increased secure attachment and decreased insecure attachment over time.


Assuntos
Metilação de DNA , Apego ao Objeto , Receptores de Ocitocina , Humanos , Receptores de Ocitocina/genética , Masculino , Feminino , Estudos Longitudinais , Criança , Poder Familiar , Relações Pais-Filho , Desenvolvimento Infantil/fisiologia
6.
Hum Mol Genet ; 29(20): 3431-3442, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33075815

RESUMO

We describe a lethal combined nervous and reproductive systems disease in three affected siblings of a consanguineous family. The phenotype was characterized by visceroautonomic dysfunction (neonatal bradycardia/apnea, feeding problems, hyperactive startle reflex), severe postnatal progressive neurological abnormalities (including abnormal neonatal cry, hypotonia, epilepsy, polyneuropathy, cerebral gray matter atrophy), visual impairment, testicular dysgenesis in males and sudden death at infant age by brainstem-mediated cardiorespiratory arrest. Whole-exome sequencing revealed a novel homozygous frameshift variant p.Val242GlufsTer52 in the TSPY-like 1 gene (TSPYL1). The truncated TSPYL1 protein that lacks the nucleosome assembly protein domain was retained in the Golgi of fibroblasts from the three patients, whereas control fibroblasts express full-length TSPYL1 in the nucleus. Proteomic analysis of nuclear extracts from fibroblasts identified 24 upregulated and 20 downregulated proteins in the patients compared with 5 controls with 'regulation of cell cycle' as the highest scored biological pathway affected. TSPYL1-deficient cells had prolonged S and G2 phases with reduced cellular proliferation rates. Tspyl1 depletion in zebrafish mimicked the patients' phenotype with early lethality, defects in neurogenesis and cardiac dilation. In conclusion, this study reports the third pedigree with recessive TSPYL1 variants, confirming that TSPYL1 deficiency leads to a combined nervous and reproductive systems disease, and provides for the first time insights into the disease mechanism.


Assuntos
Fibroblastos/patologia , Mutação da Fase de Leitura , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteoma/análise , Morte Súbita do Lactente/patologia , Animais , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Morte Súbita do Lactente/genética , Sequenciamento do Exoma , Peixe-Zebra
7.
Am J Hum Genet ; 104(5): 957-967, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006512

RESUMO

Replicating the human genome efficiently and accurately is a daunting challenge involving the duplication of upward of three billion base pairs. At the core of the complex machinery that achieves this task are three members of the B family of DNA polymerases: DNA polymerases α, δ, and ε. Collectively these multimeric polymerases ensure DNA replication proceeds at optimal rates approaching 2 × 103 nucleotides/min with an error rate of less than one per million nucleotides polymerized. The majority of DNA replication of undamaged DNA is conducted by DNA polymerases δ and ε. The DNA polymerase α-primase complex performs limited synthesis to initiate the replication process, along with Okazaki-fragment synthesis on the discontinuous lagging strand. An increasing number of human disorders caused by defects in different components of the DNA-replication apparatus have been described to date. These are clinically diverse and involve a wide range of features, including variable combinations of growth delay, immunodeficiency, endocrine insufficiencies, lipodystrophy, and cancer predisposition. Here, by using various complementary approaches, including classical linkage analysis, targeted next-generation sequencing, and whole-exome sequencing, we describe distinct missense and splice-impacting mutations in POLA1 in five unrelated families presenting with an X-linked syndrome involving intellectual disability, proportionate short stature, microcephaly, and hypogonadism. POLA1 encodes the p180 catalytic subunit of DNA polymerase α-primase. A range of replicative impairments could be demonstrated in lymphoblastoid cell lines derived from affected individuals. Our findings describe the presentation of pathogenic mutations in a catalytic component of a B family DNA polymerase member, DNA polymerase α.


Assuntos
DNA Polimerase I/genética , DNA Primase/genética , Doenças Genéticas Ligadas ao Cromossomo X/etiologia , Transtornos do Crescimento/etiologia , Hipogonadismo/etiologia , Deficiência Intelectual/etiologia , Microcefalia/etiologia , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Transtornos do Crescimento/patologia , Humanos , Hipogonadismo/patologia , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Pessoa de Meia-Idade , Linhagem , Sequenciamento do Exoma
8.
Platelets ; 33(2): 320-323, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33616470

RESUMO

Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM) is a rare inherited disorder confirmed with the presence of a pathogenic germline RUNX1 variant and is thought to be heavily underdiagnosed. RUNX1 has also been found to be mutated in up to 10% of adult AML cases and other cell malignancies. We performed targeted next-generation sequencing and subsequent MLPA analysis in a kindred with multiple affected individuals with low platelet counts and a bleeding history. We detected a novel heterozygous exon 3-7 large deletion in the RUNX1 gene in all affected family members which is predicted to remove all of the Runt-homology DNA-binding domain and a portion of the Activation domain. Our results show that the combination of targeted NGS and MLPA analysis is an effective way to detect copy number variants (CNVs) which would be missed by conventional sequencing methods. This precise diagnosis offers the possibility of accurate counseling and clinical management in such patients who could go onto develop other cell malignancies.


Assuntos
Transtornos Herdados da Coagulação Sanguínea/genética , Transtornos Plaquetários/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Éxons/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Predisposição Genética para Doença , Humanos , Masculino , Adulto Jovem
9.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886993

RESUMO

Platelets are generated and released into the bloodstream from their precursor cells, megakaryocytes that reside in the bone marrow. Though platelets have no nucleus or DNA, they contain a full transcriptome that, during platelet formation, is transported from the megakaryocyte to the platelet. It has been described that transcripts in platelets can be translated into proteins that influence platelet response. The platelet transcriptome is highly dynamic and has been extensively studied using microarrays and, more recently, RNA sequencing (RNA-seq) in relation to diverse conditions (inflammation, obesity, cancer, pathogens and others). In this review, we focus on bulk and single-cell RNA-seq studies that have aimed to characterize the coding transcriptome of healthy megakaryocytes and platelets in humans. It has been noted that bulk RNA-seq has limitations when studying in vitro-generated megakaryocyte cultures that are highly heterogeneous, while single-cell RNA-seq has not yet been applied to platelets due to their very limited RNA content. Next, we illustrate how these methods can be applied in the field of inherited platelet disorders for gene discovery and for unraveling novel disease mechanisms using RNA from platelets and megakaryocytes and rare disease bioinformatics. Next, future perspectives are discussed on how this field of coding transcriptomics can be integrated with other next-generation technologies to decipher unexplained inherited platelet disorders in a multiomics approach.


Assuntos
Transtornos Plaquetários , Megacariócitos , Transtornos Plaquetários/metabolismo , Plaquetas/metabolismo , Humanos , Megacariócitos/metabolismo , RNA/metabolismo , Trombopoese/genética , Transcriptoma
10.
Blood ; 134(23): 2082-2091, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31064749

RESUMO

A targeted high-throughput sequencing (HTS) panel test for clinical diagnostics requires careful consideration of the inclusion of appropriate diagnostic-grade genes, the ability to detect multiple types of genomic variation with high levels of analytic sensitivity and reproducibility, and variant interpretation by a multidisciplinary team (MDT) in the context of the clinical phenotype. We have sequenced 2396 index patients using the ThromboGenomics HTS panel test of diagnostic-grade genes known to harbor variants associated with rare bleeding, thrombotic, or platelet disorders (BTPDs). The molecular diagnostic rate was determined by the clinical phenotype, with an overall rate of 49.2% for all thrombotic, coagulation, platelet count, and function disorder patients and a rate of 3.2% for patients with unexplained bleeding disorders characterized by normal hemostasis test results. The MDT classified 745 unique variants, including copy number variants (CNVs) and intronic variants, as pathogenic, likely pathogenic, or variants of uncertain significance. Half of these variants (50.9%) are novel and 41 unique variants were identified in 7 genes recently found to be implicated in BTPDs. Inspection of canonical hemostasis pathways identified 29 patients with evidence of oligogenic inheritance. A molecular diagnosis has been reported for 894 index patients providing evidence that introducing an HTS genetic test is a valuable addition to laboratory diagnostics in patients with a high likelihood of having an inherited BTPD.


Assuntos
Transtornos Plaquetários , Hemorragia , Sequenciamento de Nucleotídeos em Larga Escala , Trombose , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/genética , Feminino , Dosagem de Genes , Hemorragia/diagnóstico , Hemorragia/genética , Hemostasia/genética , Humanos , Masculino , Trombose/diagnóstico , Trombose/genética
11.
Blood ; 134(23): 2070-2081, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31217188

RESUMO

To identify novel causes of hereditary thrombocytopenia, we performed a genetic association analysis of whole-genome sequencing data from 13 037 individuals enrolled in the National Institute for Health Research (NIHR) BioResource, including 233 cases with isolated thrombocytopenia. We found an association between rare variants in the transcription factor-encoding gene IKZF5 and thrombocytopenia. We report 5 causal missense variants in or near IKZF5 zinc fingers, of which 2 occurred de novo and 3 co-segregated in 3 pedigrees. A canonical DNA-zinc finger binding model predicts that 3 of the variants alter DNA recognition. Expression studies showed that chromatin binding was disrupted in mutant compared with wild-type IKZF5, and electron microscopy revealed a reduced quantity of α granules in normally sized platelets. Proplatelet formation was reduced in megakaryocytes from 7 cases relative to 6 controls. Comparison of RNA-sequencing data from platelets, monocytes, neutrophils, and CD4+ T cells from 3 cases and 14 healthy controls showed 1194 differentially expressed genes in platelets but only 4 differentially expressed genes in each of the other blood cell types. In conclusion, IKZF5 is a novel transcriptional regulator of megakaryopoiesis and the eighth transcription factor associated with dominant thrombocytopenia in humans.


Assuntos
Plaquetas , Doenças Genéticas Inatas , Mutação em Linhagem Germinativa , Fator de Transcrição Ikaros , Mutação de Sentido Incorreto , Trombocitopenia , Trombopoese/genética , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Feminino , Regulação da Expressão Gênica , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Células HEK293 , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Masculino , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia
12.
Haematologica ; 106(5): 1423-1432, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32299908

RESUMO

We have identified a rare missense variant on chromosome 9, position 125145990 (GRCh37), in exon 8 in PTGS1 (the gene encoding cyclo-oxygenase 1, COX-1, the target of anti-thrombotic aspirin therapy). We report that in the homozygous state within a large consanguineous family this variant is associated with a bleeding phenotype and alterations in platelet reactivity and eicosanoid production. Western blotting and confocal imaging demonstrated that COX-1 was absent in the platelets of three family members homozygous for the PTGS1 variant but present in their leukocytes. Platelet reactivity, as assessed by aggregometry, lumi-aggregometry and flow cytometry, was impaired in homozygous family members, as were platelet adhesion and spreading. The productions of COX-derived eicosanoids by stimulated platelets were greatly reduced but there were no changes in the levels of urinary metabolites of COX-derived eicosanoids. The proband exhibited additional defects in platelet aggregation and spreading which may explain why her bleeding phenotype was slightly more severe than those of other homozygous affected relatives. This is the first demonstration in humans of the specific loss of platelet COX-1 activity and provides insight into its consequences for platelet function and eicosanoid metabolism. Notably despite the absence of thromboxane A2 (TXA2) formation by platelets, urinary TXA2 metabolites were in the normal range indicating these cannot be assumed as markers of in vivo platelet function. Results from this study are important benchmarks for the effects of aspirin upon platelet COX-1, platelet function and eicosanoid production as they define selective platelet COX-1 ablation within humans.


Assuntos
Aspirina , Testes de Função Plaquetária , Plaquetas , Ciclo-Oxigenase 1/genética , Feminino , Humanos , Agregação Plaquetária/genética , Tromboxano A2
13.
Hum Mutat ; 41(1): 277-290, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31562665

RESUMO

The heterogeneous manifestations of MYH9-related disorder (MYH9-RD), characterized by macrothrombocytopenia, Döhle-like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE-BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9-RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9-RD should always be considered. A HTS-based strategy is a reliable method to reach a conclusive diagnosis of MYH9-RD in clinical practice.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Cadeias Pesadas de Miosina/genética , Adolescente , Adulto , Idoso , Alelos , Criança , Pré-Escolar , Mapeamento Cromossômico , Evolução Molecular , Feminino , Imunofluorescência , Expressão Gênica , Estudos de Associação Genética/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Cadeias Pesadas de Miosina/metabolismo , Fenótipo , Adulto Jovem
14.
Blood ; 132(13): 1399-1412, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-29898956

RESUMO

Unlike primary myelofibrosis (PMF) in adults, myelofibrosis in children is rare. Congenital (inherited) forms of myelofibrosis (cMF) have been described, but the underlying genetic mechanisms remain elusive. Here we describe 4 families with autosomal recessive inherited macrothrombocytopenia with focal myelofibrosis due to germ line loss-of-function mutations in the megakaryocyte-specific immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor G6b-B (G6b, C6orf25, or MPIG6B). Patients presented with a mild-to-moderate bleeding diathesis, macrothrombocytopenia, anemia, leukocytosis and atypical megakaryocytes associated with a distinctive, focal, perimegakaryocytic pattern of bone marrow fibrosis. In addition to identifying the responsible gene, the description of G6b-B as the mutated protein potentially implicates aberrant G6b-B megakaryocytic signaling and activation in the pathogenesis of myelofibrosis. Targeted insertion of human G6b in mice rescued the knockout phenotype and a copy number effect of human G6b-B expression was observed. Homozygous knockin mice expressed 25% of human G6b-B and exhibited a marginal reduction in platelet count and mild alterations in platelet function; these phenotypes were more severe in heterozygous mice that expressed only 12% of human G6b-B. This study establishes G6b-B as a critical regulator of platelet homeostasis in humans and mice. In addition, the humanized G6b mouse will provide an invaluable tool for further investigating the physiological functions of human G6b-B as well as testing the efficacy of drugs targeting this receptor.


Assuntos
Mutação com Perda de Função , Mielofibrose Primária/congênito , Receptores Imunológicos/genética , Trombocitopenia/congênito , Adolescente , Adulto , Animais , Plaquetas/metabolismo , Plaquetas/patologia , Criança , Pré-Escolar , Feminino , Técnicas de Introdução de Genes , Humanos , Lactente , Masculino , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linhagem , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Trombocitopenia/genética , Trombocitopenia/patologia , Adulto Jovem
15.
Haematologica ; 105(4): 888-894, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32139434

RESUMO

Glanzmann thrombasthenia (GT) is an autosomal recessive disorder of platelet aggregation caused by quantitative or qualitative defects in integrins αIIb and ß3. These integrins are encoded by the ITGA2B and ITGB3 genes and form platelet glycoprotein (GP)IIb/IIIa, which acts as the principal platelet receptor for fibrinogen. Although there is variability in the clinical phenotype, most patients present with severe mucocutaneous bleeding at an early age. A classic pattern of abnormal platelet aggregation, platelet glycoprotein expression and molecular studies confirm the diagnosis. Management of bleeding is based on a combination of hemostatic agents including recombinant activated factor VII with or without platelet transfusions and antifibrinolytic agents. Refractory bleeding and platelet alloimmunization are common complications. In addition, pregnant patients pose unique management challenges. This review highlights clinical and molecular aspects in the approach to patients with GT, with particular emphasis on the significance of multidisciplinary care.


Assuntos
Trombastenia , Plaquetas , Humanos , Integrina beta3/genética , Agregação Plaquetária , Testes de Função Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Trombastenia/diagnóstico , Trombastenia/genética , Trombastenia/terapia
16.
Medicina (Kaunas) ; 56(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255186

RESUMO

Proto-oncogene tyrosine-protein kinase SRC (SRC), as other members of the SRC family kinases (SFK), plays an important role in regulating signal transduction by different cell surface receptors after changes in the cellular environment. Here, we reviewed the role of SRC in platelets and megakaryocytes (MK). In platelets, inactive closed SRC is coupled to the ß subunit of integrin αIIbß3 while upon fibrinogen binding during platelet activation, αIIbß3-mediated outside-in signaling is initiated by activation of SRC. Active open SRC now further stimulates many downstream effectors via tyrosine phosphorylation of enzymes, adaptors, and especially cytoskeletal components. Functional platelet studies using SRC knockout mice or broad spectrum SFK inhibitors pointed out that SRC mediates their spreading on fibrinogen. On the other hand, an activating pathological SRC missense variant E527K in humans that causes bleeding inhibits collagen-induced platelet activation while stimulating platelet spreading. The role of SRC in megakaryopoiesis is much less studied. SRC knockout mice have a normal platelet count though studies with SFK inhibitors point out that SRC could interfere with MK polyploidization and proplatelet formation but these inhibitors are not specific. Patients with the SRC E527K variant have thrombocytopenia due to hyperactive SRC that inhibits proplatelet formation after increased spreading of MK on fibrinogen and enhanced formation of podosomes. Studies in humans have contributed significantly to our understanding of SRC signaling in platelets and MK.


Assuntos
Plaquetas , Quinases da Família src , Animais , Biologia , Humanos , Megacariócitos , Camundongos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Proto-Oncogene Mas , Quinases da Família src/genética
17.
Blood ; 130(8): 1026-1030, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28637664

RESUMO

Heritable platelet function disorders (PFDs) are genetically heterogeneous and poorly characterized. Pathogenic variants in RASGRP2, which encodes calcium and diacylglycerol-regulated guanine exchange factor I (CalDAG-GEFI), have been reported previously in 3 pedigrees with bleeding and reduced platelet aggregation responses. To better define the phenotype associated with pathogenic RASGRP2 variants, we compared high-throughput sequencing and phenotype data from 2042 cases in pedigrees with unexplained bleeding or platelet disorders to data from 5422 controls. Eleven cases harbored 11 different, previously unreported RASGRP2 variants that were biallelic and likely pathogenic. The variants included 5 high-impact variants predicted to prevent CalDAG-GEFI expression and 6 missense variants affecting the CalDAG-GEFI CDC25 domain, which mediates Rap1 activation during platelet inside-out αIIbß3 signaling. Cases with biallelic RASGRP2 variants had abnormal mucocutaneous, surgical, and dental bleeding from childhood, requiring ≥1 blood or platelet transfusion in 78% of cases. Platelets displayed reduced aggregation in response to adenosine 5'-diphosphate and epinephrine, but variable aggregation defects with other agonists. There were no other consistent clinical or laboratory features. These data enable definition of human CalDAG-GEFI deficiency as a nonsyndromic, recessive PFD associated with a moderate or severe bleeding phenotype and complex defects in platelet aggregation.


Assuntos
Plaquetas/patologia , Fatores de Troca do Nucleotídeo Guanina/genética , Hemorragia/genética , Mutação/genética , Alelos , Sequência de Bases , Feminino , Humanos , Masculino , Linhagem
18.
Blood ; 129(4): 520-524, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28064200

RESUMO

The von Willebrand receptor complex, which is composed of the glycoproteins Ibα, Ibß, GPV, and GPIX, plays an essential role in the earliest steps in hemostasis. During the last 4 decades, it has become apparent that loss of function of any 1 of 3 of the genes encoding these glycoproteins (namely, GP1BA, GP1BB, and GP9) leads to autosomal recessive macrothrombocytopenia complicated by bleeding. A small number of variants in GP1BA have been reported to cause a milder and dominant form of macrothrombocytopenia, but only 2 tentative reports exist of such a variant in GP1BB By analyzing data from a collection of more than 1000 genome-sequenced patients with a rare bleeding and/or platelet disorder, we have identified a significant association between rare monoallelic variants in GP1BB and macrothrombocytopenia. To strengthen our findings, we sought further cases in 2 additional collections in the United Kingdom and Japan. Across 18 families exhibiting phenotypes consistent with autosomal dominant inheritance of macrothrombocytopenia, we report on 27 affected cases carrying 1 of 9 rare variants in GP1BB.


Assuntos
Plaquetas/metabolismo , Hemorragia/genética , Mutação , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Trombocitopenia/genética , Alelos , Plaquetas/patologia , Estudos de Casos e Controles , Feminino , Expressão Gênica , Genes Dominantes , Genoma Humano , Hemorragia/diagnóstico , Hemorragia/metabolismo , Hemorragia/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Contagem de Plaquetas , Trombocitopenia/diagnóstico , Trombocitopenia/metabolismo , Trombocitopenia/patologia
19.
Haematologica ; 104(5): 1036-1045, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30467204

RESUMO

Sphingolipids are fundamental to membrane trafficking, apoptosis, and cell differentiation and proliferation. KDSR or 3-keto-dihydrosphingosine reductase is an essential enzyme for de novo sphingolipid synthesis, and pathogenic mutations in KDSR result in the severe skin disorder erythrokeratodermia variabilis et progressiva-4 Four of the eight reported cases also had thrombocytopenia but the underlying mechanism has remained unexplored. Here we expand upon the phenotypic spectrum of KDSR deficiency with studies in two siblings with novel compound heterozygous variants associated with thrombocytopenia, anemia, and minimal skin involvement. We report a novel phenotype of progressive juvenile myelofibrosis in the propositus, with spontaneous recovery of anemia and thrombocytopenia in the first decade of life. Examination of bone marrow biopsies showed megakaryocyte hyperproliferation and dysplasia. Megakaryocytes obtained by culture of CD34+ stem cells confirmed hyperproliferation and showed reduced proplatelet formation. The effect of KDSR insufficiency on the sphingolipid profile was unknown, and was explored in vivo and in vitro by a broad metabolomics screen that indicated activation of an in vivo compensatory pathway that leads to normalization of downstream metabolites such as ceramide. Differentiation of propositus-derived induced pluripotent stem cells to megakaryocytes followed by expression of functional KDSR showed correction of the aberrant cellular and biochemical phenotypes, corroborating the critical role of KDSR in proplatelet formation. Finally, Kdsr depletion in zebrafish recapitulated the thrombocytopenia and showed biochemical changes similar to those observed in the affected siblings. These studies support an important role for sphingolipids as regulators of cytoskeletal organization during megakaryopoiesis and proplatelet formation.


Assuntos
Oxirredutases do Álcool/deficiência , Plaquetas/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Megacariócitos/patologia , Esfingolipídeos/metabolismo , Trombocitopenia/etiologia , Oxirredutases do Álcool/genética , Animais , Plaquetas/metabolismo , Diferenciação Celular , Células Cultivadas , Criança , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Megacariócitos/metabolismo , Metabolômica , Mutação , Linhagem , Prognóstico , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA