Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2315985121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377192

RESUMO

Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.


Assuntos
Antígenos de Histocompatibilidade Classe I , Hominidae , Animais , Humanos , Proteínas Virais/metabolismo , Citomegalovirus , Hominidae/genética , Hominidae/metabolismo , Linhagem Celular , Antígenos de Histocompatibilidade/metabolismo , Antígenos HLA-A/metabolismo , Peptídeos/metabolismo
2.
J Biol Chem ; 300(7): 107428, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823638

RESUMO

Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.

3.
Mol Syst Biol ; 20(3): 242-275, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273161

RESUMO

Isogenic cells respond in a heterogeneous manner to interferon. Using a micropatterning approach combined with high-content imaging and spatial analyses, we characterized how the population context (position of a cell with respect to neighboring cells) of epithelial cells affects their response to interferons. We identified that cells at the edge of cellular colonies are more responsive than cells embedded within colonies. We determined that this spatial heterogeneity in interferon response resulted from the polarized basolateral interferon receptor distribution, making cells located in the center of cellular colonies less responsive to ectopic interferon stimulation. This was conserved across cell lines and primary cells originating from epithelial tissues. Importantly, cells embedded within cellular colonies were not protected from viral infection by apical interferon treatment, demonstrating that the population context-driven heterogeneous response to interferon influences the outcome of viral infection. Our data highlights that the behavior of isolated cells does not directly translate to their behavior in a population, placing the population context as one important factor influencing heterogeneity during interferon response in epithelial cells.


Assuntos
Interferons , Viroses , Humanos , Interferons/farmacologia , Interferons/metabolismo , Células Epiteliais/metabolismo , Linhagem Celular , Viroses/metabolismo
4.
Nat Chem Biol ; 19(10): 1196-1204, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142807

RESUMO

Presentation of antigenic peptides by major histocompatibility complex class II (MHC-II) proteins determines T helper cell reactivity. The MHC-II genetic locus displays a large degree of allelic polymorphism influencing the peptide repertoire presented by the resulting MHC-II protein allotypes. During antigen processing, the human leukocyte antigen (HLA) molecule HLA-DM (DM) encounters these distinct allotypes and catalyzes exchange of the placeholder peptide CLIP by exploiting dynamic features of MHC-II. Here, we investigate 12 highly abundant CLIP-bound HLA-DRB1 allotypes and correlate dynamics to catalysis by DM. Despite large differences in thermodynamic stability, peptide exchange rates fall into a target range that maintains DM responsiveness. A DM-susceptible conformation is conserved in MHC-II molecules, and allosteric coupling between polymorphic sites affects dynamic states that influence DM catalysis. As exemplified for rheumatoid arthritis, we postulate that intrinsic dynamic features of peptide-MHC-II complexes contribute to the association of individual MHC-II allotypes with autoimmune disease.


Assuntos
Antígenos HLA-D , Antígenos HLA-DR , Humanos , Antígenos HLA-D/metabolismo , Antígenos HLA-DR/metabolismo , Peptídeos/química , Apresentação de Antígeno , Catálise , Ligação Proteica
5.
PLoS Biol ; 20(3): e3001503, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312684

RESUMO

Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that-like SynCAM 1-MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)A receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABAA receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABAA receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses.


Assuntos
Proteínas de Membrana , Densidade Pós-Sináptica , Proteínas de Membrana/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de AMPA/metabolismo , Receptores de GABA-A , Sinapses/metabolismo
6.
J Biol Chem ; 299(4): 102987, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758805

RESUMO

Tapasin (Tsn) plays a critical role in antigen processing and presentation by major histocompatibility complex class I (MHC-I) molecules. The mechanism of Tsn-mediated peptide loading and exchange hinges on the conformational dynamics governing the interaction of Tsn and MHC-I with recent structural and functional studies pinpointing the critical sites of direct or allosteric regulation. In this review, we highlight these recent findings and relate them to the extensive molecular and cellular data that are available for these evolutionary interdependent proteins. Furthermore, allotypic differences of MHC-I with regard to the editing and chaperoning function of Tsn are reviewed and related to the mechanistic observations. Finally, evolutionary aspects of the mode of action of Tsn will be discussed, a short comparison with the Tsn-related molecule TAPBPR (Tsn-related protein) will be given, and the impact of Tsn on noncanonical MHC-I molecules will be described.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Imunoglobulinas , Proteínas de Membrana Transportadoras , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
7.
Cytotherapy ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703154

RESUMO

One of the challenges in Good Manufacturing Practice (GMP)-compliant human induced pluripotent stem cell (hiPSC) production is the validation of quality control (QC) tests specific for hiPSCs, which are required for GMP batch release. This study presents a comprehensive description of the validation process for hiPSC-specific GMP-compliant QC assays; more specifically, the validation of assays to assess the potential presence of residual episomal vectors (REVs), the expression of markers of the undifferentiated state and the directed differentiation potential of hiPSCs. Critical aspects and specific acceptance criteria were formulated in a validation plan prior to assay validation. Assay specificity, sensitivity and reproducibility were tested, and the equipment used for each assay was subjected to performance qualification. A minimum input of 20 000 cells (120 ng of genomic DNA) was defined for accurate determination of the presence of REVs. Furthermore, since vector loss in hiPSC lines is a passage-dependent process, we advocate screening for REVs between passages eight and 10, as testing at earlier passages might lead to unnecessary rejection of hiPSC lines. The cutoff value for assessment of markers of the undifferentiated state was set to the expression of at least three individual markers on at least 75% of the cells. When multi-color flow cytometry panels are used, a fluorescence minus one control is advised to ensure the control for fluorescent spread. For the assay to assess the directed differentiation potential, the detection limit was set to two of three positive lineage-specific markers for each of the three individual germ layers. All of our assays proved to be reproducible and specific. Our data demonstrate that our implemented analytical procedures are suitable as QC assays for the batch release of GMP-compliant hiPSCs.

8.
Cytotherapy ; 26(6): 556-566, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38483359

RESUMO

BACKGROUND AIMS: Few human induced pluripotent stem cell (hiPSC) lines are Good Manufacturing Practice (GMP)-compliant, limiting the clinical use of hiPSC-derived products. Here, we addressed this by establishing and validating an in-house platform to produce GMP-compliant hiPSCs that would be appropriate for producing both allogeneic and autologous hiPSC-derived products. METHODS: Our standard research protocol for hiPSCs production was adapted and translated into a GMP-compliant platform. In addition to the generation of GMP-compliant hiPSC, the platform entails the methodology for donor recruitment, consent and screening, donor material procurement, hiPSCs manufacture, in-process control, specific QC test validation, QC testing, product release, hiPSCs storage and stability testing. For platform validation, one test run and three production runs were performed. Highest-quality lines were selected to establish master cell banks (MCBs). RESULTS: Two MCBs were successfully released under GMP conditions. They demonstrated safety (sterility, negative mycoplasma, endotoxins <5.0 EU/mL and negative adventitious agents), cell identity (>75% of cells expressing markers of undifferentiated state, identical STR profile, normal karyotype in >20 metaphases), purity (negative residual vectors and no plasmid integration in the genome) and potency (expression of at least two of the three markers for each of the three germ layers). In addition, directed differentiation to somitoids (skeletal muscle precursors) and six potential clinical products from all three germ layers was achieved: pancreatic islets (endoderm), kidney organoids and cardiomyocytes (mesoderm), and keratinocytes, GABAergic interneurons and inner-ear organoids (ectoderm). CONCLUSIONS: We successfully developed and validated a platform for generating GMP-compliant hiPSC lines. The two MCBs released were shown to differentiate into clinical products relevant for our own and other regenerative medicine interests.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular
9.
Nucleic Acids Res ; 50(5): 2938-2958, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188580

RESUMO

Biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and their recycling after splicing require numerous assembly/recycling factors whose modes of action are often poorly understood. The intrinsically disordered TSSC4 protein has been identified as a nuclear-localized U5 snRNP and U4/U6-U5 tri-snRNP assembly/recycling factor, but how TSSC4's intrinsic disorder supports TSSC4 functions remains unknown. Using diverse interaction assays and cryogenic electron microscopy-based structural analysis, we show that TSSC4 employs four conserved, non-contiguous regions to bind the PRPF8 Jab1/MPN domain and the SNRNP200 helicase at functionally important sites. It thereby inhibits SNRNP200 helicase activity, spatially aligns the proteins, coordinates formation of a U5 sub-module and transiently blocks premature interaction of SNRNP200 with at least three other spliceosomal factors. Guided by the structure, we designed a TSSC4 variant that lacks stable binding to the PRPF8 Jab1/MPN domain or SNRNP200 in vitro. Comparative immunoprecipitation/mass spectrometry from HEK293 nuclear extract revealed distinct interaction profiles of wild type TSSC4 and the variant deficient in PRPF8/SNRNP200 binding with snRNP proteins, other spliceosomal proteins as well as snRNP assembly/recycling factors and chaperones. Our findings elucidate molecular strategies employed by an intrinsically disordered protein to promote snRNP assembly, and suggest multiple TSSC4-dependent stages during snRNP assembly/recycling.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Supressoras de Tumor/metabolismo , DNA Helicases/metabolismo , Células HEK293 , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/metabolismo
10.
Rheumatology (Oxford) ; 62(1): 360-372, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35412619

RESUMO

OBJECTIVES: To study the mechanism by which the readthrough mutation in TNFRSF11B, encoding osteoprotegerin (OPG) with additional 19 amino acids at its C-terminus (OPG-XL), causes the characteristic bidirectional phenotype of subchondral bone turnover accompanied by cartilage mineralization in chondrocalcinosis patients. METHODS: OPG-XL was studied by human induced pluripotent stem cells expressing OPG-XL and two isogenic CRISPR/Cas9-corrected controls in cartilage and bone organoids. Osteoclastogenesis was studied with monocytes from OPG-XL carriers and matched healthy controls followed by gene expression characterization. Dual energy X-ray absorptiometry scans and MRI analyses were used to characterize the phenotype of carriers and non-carriers of the mutation. RESULTS: Human OPG-XL carriers relative to sex- and age-matched controls showed, after an initial delay, large active osteoclasts with high number of nuclei. By employing hiPSCs expressing OPG-XL and isogenic CRISPR/Cas9-corrected controls to established cartilage and bone organoids, we demonstrated that expression of OPG-XL resulted in excessive fibrosis in cartilage and high mineralization in bone accompanied by marked downregulation of MGP, encoding matrix Gla protein, and upregulation of DIO2, encoding type 2 deiodinase, gene expression, respectively. CONCLUSIONS: The readthrough mutation at CCAL1 locus in TNFRSF11B identifies an unknown role for OPG-XL in subchondral bone turnover and cartilage mineralization in humans via DIO2 and MGP functions. Previously, OPG-XL was shown to affect binding between RANKL and heparan sulphate (HS) resulting in loss of immobilized OPG-XL. Therefore, effects may be triggered by deficiency in the immobilization of OPG-XL Since the characteristic bidirectional pathophysiology of articular cartilage calcification accompanied by low subchondral bone mineralization is also a hallmark of OA pathophysiology, our results are likely extrapolated to common arthropathies.


Assuntos
Calcinose , Cartilagem Articular , Condrocalcinose , Células-Tronco Pluripotentes Induzidas , Humanos , Remodelação Óssea , Calcinose/metabolismo , Cartilagem Articular/metabolismo , Condrocalcinose/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
11.
Cell Microbiol ; 23(6): e13322, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33629465

RESUMO

Influenza A viruses contain two S-acylated proteins, the ion channel M2 and the glycoprotein hemagglutinin (HA). Acylation of the latter is essential for virus replication. Here we analysed the expression of each of the 23 members of the family of ZDHHC acyltransferases in human airway cells, the site of virus replication. RT-PCR revealed that every ZDHHC acyltransferase (except ZDHHC19) is expressed in A549 and Calu cells. Interestingly, expression of one ZDHHC, ZDHHC22, is upregulated in virus-infected cells; this effect is more pronounced after infection with an avian compared to a human virus strain. The viral protein NS1 triggers ZDHHC22 expression in transfected cells, whereas recombinant viruses lacking a functional NS1 gene did not cause ZDHHC22 upregulation. CRISPR/Cas9 technology was then used to knock-out the ZDHHC22 gene in A549 cells. However, acylation of M2 and HA was not reduced, as analysed for intracellular HA and M2 and the stoichiometry of S-acylation of HA incorporated into virus particles did not change according to MALDI-TOF mass spectrometry analysis. Comparative mass spectrometry of palmitoylated proteins in wt and ΔZDHHC22 cells identified 25 potential substrates of ZDHHC22 which might be involved in virus replication.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Vírus da Influenza A/fisiologia , Proteínas de Membrana/genética , Regulação para Cima , Proteínas não Estruturais Virais/genética , Células A549 , Acilação , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Cães , Técnicas de Inativação de Genes , Humanos , Células Madin Darby de Rim Canino , Replicação Viral
12.
J Chem Inf Model ; 62(24): 6586-6601, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347992

RESUMO

Protein-protein interactions often rely on specialized recognition domains, such as WW domains, which bind to specific proline-rich sequences. The specificity of these protein-protein interactions can be increased by tandem repeats, i.e., two WW domains connected by a linker. With a flexible linker, the WW domains can move freely with respect to each other. Additionally, the tandem WW domains can bind in two different orientations to their target sequences. This makes the elucidation of complex structures of tandem WW domains extremely challenging. Here, we identify and characterize two complex structures of the tandem WW domain of human formin-binding protein 21 and a peptide sequence from its natural binding partner, the core-splicing protein SmB/B'. The two structures differ in the ligand orientation and, consequently, also in the relative orientation of the two WW domains. We analyze and probe the interactions in the complexes by molecular simulations and NMR experiments. The workflow to identify the complex structures uses molecular simulations, density-based clustering, and peptide docking. It is designed to systematically generate possible complex structures for repeats of recognition domains. These structures will help us to understand the synergistic and multivalency effects that generate the astonishing versatility and specificity of protein-protein interactions.


Assuntos
Peptídeos , Humanos , Domínios WW , Ligantes , Sequência de Aminoácidos , Peptídeos/química , Espectroscopia de Ressonância Magnética , Ligação Proteica
13.
J Immunol ; 205(4): 923-935, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32690655

RESUMO

HLA molecules of the MHC class II (MHCII) bind and present pathogen-derived peptides for CD4 T cell activation. Peptide loading of MHCII in the endosomes of cells is controlled by the interplay of the nonclassical MHCII molecules, HLA-DM (DM) and HLA-DO (DO). DM catalyzes peptide loading, whereas DO, an MHCII substrate mimic, prevents DM from interacting with MHCII, resulting in an altered MHCII-peptide repertoire and increased MHCII-CLIP. Although the two genes encoding DO (DOA and DOB) are considered nonpolymorphic, there are rare natural variants. Our previous work identified DOB variants that altered DO function. In this study, we show that natural variation in the DOA gene also impacts DO function. Using the 1000 Genomes Project database, we show that ∼98% of individuals express the canonical DOA*0101 allele, and the remaining individuals mostly express DOA*0102, which we found was a gain-of-function allele. Analysis of 25 natural occurring DOα variants, which included the common alleles, identified three null variants and one variant with reduced and nine with increased ability to modulate DM activity. Unexpectedly, several of the variants produced reduced DO protein levels yet efficiently inhibited DM activity. Finally, analysis of associated single-nucleotide polymorphisms genetically linked the DOA*0102 common allele, a gain-of-function variant, with human hepatitis B viral persistence. In contrast, we found that the DOα F114L null allele was linked with viral clearance. Collectively, these studies show that natural variation occurring in the human DOA gene impacts DO function and can be linked to specific outcomes of viral infections.


Assuntos
Antígenos HLA-D/genética , Hepatite B/genética , Antígenos de Histocompatibilidade Classe II/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Apresentação de Antígeno/genética , Linhagem Celular Tumoral , Células HeLa , Hepatite B/virologia , Humanos , Peptídeos/genética
14.
Angew Chem Int Ed Engl ; 61(5): e202109032, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34735044

RESUMO

Sortase-mediated ligation (SML) is a powerful tool of protein chemistry allowing the ligation of peptides containing LPxTG sorting motifs and N-terminal glycine nucleophiles. The installation of a sorting motif into the product prohibits the assembly of multiple fragments by SML. Here we report multi-fragment SML based on switchable sortase substrates. Substitution of the Leu residue by disulfide-containing Cys(StBu) results in active sorting motifs, which are inactivatable by reduction. In combination with a photo-protected N-Gly nucleophile, multi-fragment SML is enabled by repetitive cycles of SML and ligation site switching. The feasibility of this approach was demonstrated by a proof-of-concept four-fragment ligation, the assembly of peptide probes for bivalent chromatin binding proteins and oligomerization of peptide antigens. Biochemical and immuno-assays demonstrated functionality of these probes rendering them promising tools for immunology and chromatin biochemistry.


Assuntos
Aminoaciltransferases
15.
J Cell Sci ; 132(6)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30745339

RESUMO

Protein scaffolds at presynaptic active zone membranes control information transfer at synapses. For scaffold biogenesis and maintenance, scaffold components must be safely transported along axons. A spectrum of kinases has been suggested to control transport of scaffold components, but direct kinase-substrate relationships and operational principles steering phosphorylation-dependent active zone protein transport are presently unknown. Here, we show that extensive phosphorylation of a 150-residue unstructured region at the N-terminus of the highly elongated Bruchpilot (BRP) active zone protein is crucial for ordered active zone precursor transport in Drosophila Point mutations that block SRPK79D kinase-mediated phosphorylation of the BRP N-terminus interfered with axonal transport, leading to BRP-positive axonal aggregates that also contain additional active zone scaffold proteins. Axonal aggregates formed only in the presence of non-phosphorylatable BRP isoforms containing the SRPK79D-targeted N-terminal stretch. We assume that specific active zone proteins are pre-assembled in transport packages and are thus co-transported as functional scaffold building blocks. Our results suggest that transient post-translational modification of a discrete unstructured domain of the master scaffold component BRP blocks oligomerization of these building blocks during their long-range transport.


Assuntos
Transporte Axonal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo
16.
Chembiochem ; 22(8): 1347-1356, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33290621

RESUMO

The transpeptidase sortase A of Staphylococcus aureus (Sa-SrtA) is a valuable tool in protein chemistry. The native enzyme anchors surface proteins containing a highly conserved LPxTG sorting motif to a terminal glycine residue of the peptidoglycan layer in Gram-positive bacteria. This reaction is exploited for sortase-mediated ligation (SML), allowing the site-specific linkage of synthetic peptides and recombinant proteins by a native peptide bond. However, the moderate catalytic efficiency and specificity of Sa-SrtA fueled the development of new biocatalysts for SML, including the screening of sortase A variants form microorganisms other than S. aureus and the directed protein evolution of the Sa-SrtA enzyme itself. Novel display platforms and screening formats were developed to isolate sortases with altered properties from mutant libraries. This yielded sortases with strongly enhanced catalytic activity and enzymes recognizing new sorting motifs as substrates. This minireview focuses on recent advances in the field of directed sortase evolution and applications of these tailor-made enzymes in biochemistry.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Peptídeos/metabolismo , Engenharia de Proteínas , Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Peptídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/enzimologia
17.
Cell Tissue Res ; 386(2): 309-320, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34241697

RESUMO

Cartilage has little intrinsic capacity for repair, so transplantation of exogenous cartilage cells is considered a realistic option for cartilage regeneration. We explored whether human-induced pluripotent stem cells (hiPSCs) could represent such unlimited cell sources for neo-cartilage comparable to human primary articular chondrocytes (hPACs) or human bone marrow-derived mesenchymal stromal cells (hBMSCs). For this, chondroprogenitor cells (hiCPCs) and hiPSC-derived mesenchymal stromal cells (hiMSCs) were generated from two independent hiPSC lines and characterized by morphology, flow cytometry, and differentiation potential. Chondrogenesis was compared to hBMSCs and hPACs by histology, immunohistochemistry, and RT-qPCR, while similarities were estimated based on Pearson correlations using a panel of 20 relevant genes. Our data show successful differentiations of hiPSC into hiMSCs and hiCPCs. Characteristic hBMSC markers were shared between hBMSCs and hiMSCs, with the exception of CD146 and CD45. However, neo-cartilage generated from hiMSCs showed low resemblances when compared to hBMSCs (53%) and hPACs (39%) characterized by lower collagen type 2 and higher collagen type 1 expression. Contrarily, hiCPC neo-cartilage generated neo-cartilage more similar to hPACs (65%), with stronger expression of matrix deposition markers. Our study shows that taking a stepwise approach to generate neo-cartilage from hiPSCs via chondroprogenitor cells results in strong similarities to neo-cartilage of hPACs within 3 weeks following chondrogenesis, making them a potential candidate for regenerative therapies. Contrarily, neo-cartilage deposited by hiMSCs seems more prone to hypertrophic characteristics compared to hPACs. We therefore compared chondrocytes derived from hiMSCs and hiCPCs with hPACs and hBMSCs to outline similarities and differences between their neo-cartilage and establish their potential suitability for regenerative medicine and disease modelling.


Assuntos
Cartilagem/citologia , Condrócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Cartilagem/metabolismo , Diferenciação Celular , Linhagem Celular , Condrócitos/metabolismo , Condrogênese , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transcriptoma
18.
Circ Res ; 125(10): e43-e54, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31495257

RESUMO

RATIONALE: Pathological biomechanical signaling induces vascular anomalies including cerebral cavernous malformations (CCM), which are caused by a clonal loss of CCM1/KRIT1 (Krev interaction trapped protein 1), CCM2/MGC4607, or CCM3/PDCD10. Why patients typically experience lesions only in lowly perfused venous capillaries of the cerebrovasculature is completely unknown. OBJECTIVE: In contrast, animal models with a complete loss of CCM proteins lack a functional heart and blood flow and exhibit vascular anomalies within major blood vessels as well. This finding raises the possibility that hemodynamics may play a role in the context of this vascular pathology. METHODS AND RESULTS: Here, we used a genetic approach to restore cardiac function and blood flow in a zebrafish model of CCM1. We find that blood flow prevents cardiovascular anomalies including a hyperplastic expansion within a large Ccm1-deficient vascular bed, the lateral dorsal aorta. CONCLUSIONS: This study identifies blood flow as an important physiological factor that is protective in the cause of this devastating vascular pathology.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Modelos Animais de Doenças , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Animais , Animais Geneticamente Modificados , Neoplasias do Sistema Nervoso Central/fisiopatologia , Angiografia Cerebral/métodos , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Peixe-Zebra
19.
Brain ; 143(7): 2119-2138, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572454

RESUMO

Syntaxin 1B (STX1B) is a core component of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that is critical for the exocytosis of synaptic vesicles in the presynapse. SNARE-mediated vesicle fusion is assisted by Munc18-1, which recruits STX1B in the auto-inhibited conformation, while Munc13 catalyses the fast and efficient pairing of helices during SNARE complex formation. Mutations within the STX1B gene are associated with epilepsy. Here we analysed three STX1B mutations by biochemical and electrophysiological means. These three paradigmatic mutations cause epilepsy syndromes of different severity, from benign fever-associated seizures in childhood to severe epileptic encephalopathies. An insertion/deletion (K45/RMCIE, L46M) mutation (STX1BInDel), causing mild epilepsy and located in the early helical Habc domain, leads to an unfolded protein unable to sustain neurotransmission. STX1BG226R, causing epileptic encephalopathies, strongly compromises the interaction with Munc18-1 and reduces expression of both proteins, the size of the readily releasable pool of vesicles, and Ca2+-triggered neurotransmitter release when expressed in STX1-null neurons. The mutation STX1BV216E, also causing epileptic encephalopathies, only slightly diminishes Munc18-1 and Munc13 interactions, but leads to enhanced fusogenicity and increased vesicular release probability, also in STX1-null neurons. Even though the synaptic output remained unchanged in excitatory hippocampal STX1B+/- neurons exogenously expressing STX1B mutants, the manifestation of clear and distinct molecular disease mechanisms by these mutants suggest that certain forms of epilepsies can be conceptualized by assigning mutations to structurally sensitive regions of the STX1B-Munc18-1 interface, translating into distinct neurophysiological phenotypes.


Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Sintaxina 1/genética , Animais , Genótipo , Camundongos , Mutação , Fenótipo
20.
Proc Natl Acad Sci U S A ; 114(45): 12057-12062, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078407

RESUMO

Neurotransmission is mediated by the exocytic release of neurotransmitters from readily releasable synaptic vesicles (SVs) at the active zone. To sustain neurotransmission during periods of elevated activity, release-ready vesicles need to be replenished from the reserve pool of SVs. The SV-associated synapsins are crucial for maintaining this reserve pool and regulate the mobilization of reserve pool SVs. How replenishment of release-ready SVs from the reserve pool is regulated and which other factors cooperate with synapsins in this process is unknown. Here we identify the endocytic multidomain scaffold protein intersectin as an important regulator of SV replenishment at hippocampal synapses. We found that intersectin directly associates with synapsin I through its Src-homology 3 A domain, and this association is regulated by an intramolecular switch within intersectin 1. Deletion of intersectin 1/2 in mice alters the presynaptic nanoscale distribution of synapsin I and causes defects in sustained neurotransmission due to defective SV replenishment. These phenotypes were rescued by wild-type intersectin 1 but not by a locked mutant of intersectin 1. Our data reveal intersectin as an autoinhibited scaffold that serves as a molecular linker between the synapsin-dependent reserve pool and the presynaptic endocytosis machinery.


Assuntos
Neurotransmissores/metabolismo , Sinapses/metabolismo , Sinapsinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Endocitose/fisiologia , Exocitose/fisiologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA