Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(37): E8668-E8677, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150413

RESUMO

The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import-export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal.


Assuntos
Núcleo Celular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células HeLa , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Mutação , Fosforilação , Ligação Proteica
2.
Nat Commun ; 9(1): 2685, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992949

RESUMO

How cells coordinate the response to fluctuating carbon and nitrogen availability required to maintain effective homeostasis is a key issue. Amino acid limitation that inactivates mTORC1 promotes de-phosphorylation and nuclear translocation of Transcription Factor EB (TFEB), a key transcriptional regulator of lysosome biogenesis and autophagy that is deregulated in cancer and neurodegeneration. Beyond its cytoplasmic sequestration, how TFEB phosphorylation regulates its nuclear-cytoplasmic shuttling, and whether TFEB can coordinate amino acid supply with glucose availability is poorly understood. Here we show that TFEB phosphorylation on S142 primes for GSK3ß phosphorylation on S138, and that phosphorylation of both sites but not either alone activates a previously unrecognized nuclear export signal (NES). Importantly, GSK3ß is inactivated by AKT in response to mTORC2 signaling triggered by glucose limitation. Remarkably therefore, the TFEB NES integrates carbon (glucose) and nitrogen (amino acid) availability by controlling TFEB flux through a nuclear import-export cycle.


Assuntos
Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glucose/metabolismo , Sinais de Exportação Nuclear , Transporte Ativo do Núcleo Celular , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HT29 , Homeostase , Humanos , Células MCF-7 , Microscopia Confocal , Mutação , Fosforilação
3.
ISME J ; 5(4): 627-38, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20981114

RESUMO

Complex microbial populations are organized in relation to their environment. In the intestine, the inner lining (mucosa) is a potential focal point for such organization. The proximal murine colon contains mucosal folds that are known to be associated with morphologically distinct microbes. To identify these microbes, we used the technique of laser capture microdissection (LCM) to sample microbes associated with these folds (interfold region) and within the central lumen (digesta region). Using 16S rRNA gene tag pyrosequencing, we found that microbes in the interfold region were highly enriched for the phylum Firmicutes and, more specifically, for the families Lachnospiraceae and Ruminococcaceae. Other families such as Bacteroidaceae, Enterococcaceae and Lactobacillaceae were all enriched in the digesta region. This high-resolution system to capture and examine spatial organization of intestinal microbes should facilitate microbial analysis in other mouse models, furthering our understanding of host-microbial interactions.


Assuntos
Colo Ascendente/microbiologia , Bactérias Gram-Positivas/isolamento & purificação , Animais , Colo Ascendente/anatomia & histologia , Genes de RNAr , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA