Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 49(17): 9906-9925, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500463

RESUMO

Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Autoantígeno Ku/metabolismo , Fatores de Processamento de RNA/metabolismo , Alquilantes/efeitos adversos , Alquilantes/farmacologia , Camptotecina/efeitos adversos , Camptotecina/farmacologia , Linhagem Celular Tumoral , Endodesoxirribonucleases/metabolismo , Glioblastoma/tratamento farmacológico , Recombinação Homóloga/genética , Humanos , Proteína Homóloga a MRE11/metabolismo , Interferência de RNA , Fatores de Processamento de RNA/genética , RNA Interferente Pequeno/genética , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Temozolomida/efeitos adversos , Temozolomida/farmacologia
2.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372972

RESUMO

By generating protein diversity, alternative splicing provides an important oncogenic pathway. Isocitrate dehydrogenase (IDH) 1 and 2 mutations and 1p/19q co-deletion have become crucial for the novel molecular classification of diffuse gliomas, which also incorporates DNA methylation profiling. In this study, we have carried out a bioinformatics analysis to examine the impact of the IDH mutation, as well as the 1p/19q co-deletion and the glioma CpG island methylator phenotype (G-CIMP) status on alternative splicing in a cohort of 662 diffuse gliomas from The Cancer Genome Atlas (TCGA). We identify the biological processes and molecular functions affected by alternative splicing in the various glioma subgroups and provide evidence supporting the important contribution of alternative splicing in modulating epigenetic regulation in diffuse gliomas. Targeting the genes and pathways affected by alternative splicing might provide novel therapeutic opportunities against gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Epigênese Genética , Processamento Alternativo , Glioma/genética , Glioma/terapia , Mutação , Aberrações Cromossômicas , Fenótipo , Isocitrato Desidrogenase/genética
3.
Chromosoma ; 130(1): 53-60, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547955

RESUMO

The heat shock factor 1 (HSF1)-dependent transcriptional activation of human pericentric heterochromatin in heat-shocked cells is the most striking example of transcriptional activation of heterochromatin. Until now, pericentric heterochromatin of chromosome 9 has been identified as the primary target of HSF1, in both normal and tumor heat-shocked cells. Transcriptional awakening of this large genomic region results in the nuclear accumulation of satellite III (SATIII) noncoding RNAs (ncRNAs) and the formation in cis of specific structures known as nuclear stress bodies (nSBs). Here, we show that, in four different male cell lines, including primary human fibroblasts and amniocytes, pericentric heterochromatin of chromosome Y can also serve as a unique primary site of HSF1-dependent heterochromatin transcriptional activation, production of SATIII ncRNA, and nucleation of nuclear stress bodies (nSBs) upon heat shock. Our observation suggests that the chromosomal origin of SATIII transcripts in cells submitted to heat shock is not a determinant factor as such, but that transcription of SATIII repetitive units or the SATIII ncRNA molecules is the critical element of HSF1-dependent transcription activation of constitutive heterochromatin.


Assuntos
Cromossomos Humanos Y/genética , DNA Satélite/genética , Fibroblastos/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Heterocromatina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Estresse Fisiológico , Feminino , Fibroblastos/citologia , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Humanos , Masculino , Fatores de Processamento de Serina-Arginina/genética , Transcrição Gênica
4.
Brain ; 143(2): 512-530, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891366

RESUMO

Long non-coding RNAs play critical roles in tumour progression. Through analysis of publicly available genomic datasets, we found that MIR22HG, the host gene of microRNAs miR-22-3p and miR-22-5p, is ranked among the most dysregulated long non-coding RNAs in glioblastoma. The main purpose of this work was to determine the impact of MIR22HG on glioblastoma growth and invasion and to elucidate its mechanistic function. The MIR22HG/miR-22 axis was highly expressed in glioblastoma as well as in glioma stem-like cells compared to normal neural stem cells. In glioblastoma, increased expression of MIR22HG is associated with poor prognosis. Through a number of functional studies, we show that MIR22HG silencing inhibits the Wnt/ß-catenin signalling pathway through loss of miR-22-3p and -5p. This leads to attenuated cell proliferation, invasion and in vivo tumour growth. We further show that two genes, SFRP2 and PCDH15, are direct targets of miR-22-3p and -5p and inhibit Wnt signalling in glioblastoma. Finally, based on the 3D structure of the pre-miR-22, we identified a specific small-molecule inhibitor, AC1L6JTK, that inhibits the enzyme Dicer to block processing of pre-miR-22 into mature miR-22. AC1L6JTK treatment caused an inhibition of tumour growth in vivo. Our findings show that MIR22HG is a critical inducer of the Wnt/ß-catenin signalling pathway, and that its targeting may represent a novel therapeutic strategy in glioblastoma patients.


Assuntos
Glioblastoma/genética , MicroRNAs/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Masculino , Camundongos Nus , RNA Longo não Codificante/genética
5.
RNA ; 20(11): 1655-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25323317

RESUMO

The vast majority of the human transcriptome does not code for proteins. Advances in transcriptome arrays and deep sequencing are giving rise to a fast accumulation of large data sets, particularly of long noncoding RNAs (lncRNAs). Although it is clear that individual lncRNAs may play important and diverse biological roles, there is a large gap between the number of existing lncRNAs and their known relation to molecular/cellular function. This and related information have recently been gathered in several databases dedicated to lncRNA research. Here, we review the content of general and more specialized databases on lncRNAs. We evaluate these resources in terms of the quality of annotations, the reporting of validated or predicted molecular associations, and their integration with other resources and computational analysis tools. We illustrate our findings using known and novel cancer-related lncRNAs. Finally, we discuss limitations and highlight potential future directions for these databases to help delineating functions associated with lncRNAs.


Assuntos
Bases de Dados Genéticas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biologia Computacional/métodos , Humanos , Neoplasias/genética , Transcriptoma
6.
EMBO Rep ; 15(9): 965-72, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25097252

RESUMO

Shigella flexneri, the etiological agent of bacillary dysentery, invades the human colonic epithelium and causes its massive inflammatory destruction. Little is known about the post-translational modifications implicated in regulating the host defense pathway against Shigella. Here, we show that SUMO-2 impairs Shigella invasion of epithelial cells in vitro. Using mice haploinsufficient for the SUMO E2 enzyme, we found that sumoylation regulates intestinal permeability and is required to restrict epithelial invasion and control mucosal inflammation. Quantitative proteomics reveals that Shigella infection alters the sumoylation status of a restricted set of transcriptional regulators involved in intestinal functions and inflammation. Consistent with this, sumoylation restricts the pro-inflammatory transcriptional response of Shigella-infected guts. Altogether, our results show that the SUMO pathway is an essential component of host innate protection, as it reduces the efficiency of two key steps of shigellosis: invasion and inflammatory destruction of the intestinal epithelium.


Assuntos
Disenteria Bacilar/metabolismo , Intestinos/microbiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação/genética , Animais , Disenteria Bacilar/genética , Disenteria Bacilar/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Haploinsuficiência/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Intestinos/patologia , Camundongos , Processamento de Proteína Pós-Traducional/genética , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
7.
Cells ; 11(16)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36010563

RESUMO

Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.


Assuntos
Neoplasias Encefálicas , Glioma , Doenças Neurodegenerativas , Biomassa , Neoplasias Encefálicas/genética , Genoma Humano , Humanos , Doenças Neurodegenerativas/genética
8.
Nat Metab ; 4(5): 589-607, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35618940

RESUMO

Pyruvate dehydrogenase (PDH) is the gatekeeper enzyme of the tricarboxylic acid (TCA) cycle. Here we show that the deglycase DJ-1 (encoded by PARK7, a key familial Parkinson's disease gene) is a pacemaker regulating PDH activity in CD4+ regulatory T cells (Treg cells). DJ-1 binds to PDHE1-ß (PDHB), inhibiting phosphorylation of PDHE1-α (PDHA), thus promoting PDH activity and oxidative phosphorylation (OXPHOS). Park7 (Dj-1) deletion impairs Treg survival starting in young mice and reduces Treg homeostatic proliferation and cellularity only in aged mice. This leads to increased severity in aged mice during the remission of experimental autoimmune encephalomyelitis (EAE). Dj-1 deletion also compromises differentiation of inducible Treg cells especially in aged mice, and the impairment occurs via regulation of PDHB. These findings provide unforeseen insight into the complicated regulatory machinery of the PDH complex. As Treg homeostasis is dysregulated in many complex diseases, the DJ-1-PDHB axis represents a potential target to maintain or re-establish Treg homeostasis.


Assuntos
Oxirredutases , Doença de Parkinson , Proteína Desglicase DJ-1 , Piruvatos , Linfócitos T Reguladores , Envelhecimento , Animais , Homeostase , Camundongos , Oxirredutases/metabolismo , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , Piruvatos/metabolismo , Linfócitos T Reguladores/metabolismo
9.
Cancers (Basel) ; 12(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927769

RESUMO

Resistance to chemotherapy by temozolomide (TMZ) is a major cause of glioblastoma (GBM) recurrence. So far, attempts to characterize factors that contribute to TMZ sensitivity have largely focused on protein-coding genes, and failed to provide effective therapeutic targets. Long noncoding RNAs (lncRNAs) are essential regulators of epigenetic-driven cell diversification, yet, their contribution to the transcriptional response to drugs is less understood. Here, we performed RNA-seq and small RNA-seq to provide a comprehensive map of transcriptome regulation upon TMZ in patient-derived GBM stem-like cells displaying different drug sensitivity. In a search for regulatory mechanisms, we integrated thousands of molecular associations stored in public databases to generate a background "RNA interactome". Our systems-level analysis uncovered a coordinated program of TMZ response reflected by regulatory circuits that involve transcription factors, mRNAs, miRNAs, and lncRNAs. We discovered 22 lncRNAs involved in regulatory loops and/or with functional relevance in drug response and prognostic value in gliomas. Thus, the investigation of TMZ-induced gene networks highlights novel RNA-based predictors of chemosensitivity in GBM. The computational modeling used to identify regulatory circuits underlying drug response and prioritizing gene candidates for functional validation is applicable to other datasets.

10.
Trends Biotechnol ; 37(1): 38-55, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30177380

RESUMO

High-throughput genetic screens interfering with gene expression are invaluable tools to identify gene function and phenotype-to-genotype interactions. Implementing such screens in the laboratory is challenging, and the choice between currently available technologies based on RNAi and CRISPR/Cas9 (CRISPR-associated protein 9) is not trivial. Identifying reliable candidate hits requires a streamlined experimental setup adjusted to the specific biological question. Here, we provide a critical assessment of the various RNAi/CRISPR approaches to pooled screens and discuss their advantages and pitfalls. We specify a set of best practices for key parameters enabling a reproducible screen and provide a detailed overview of analysis methods and repositories for identifying the best candidate gene hits.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Introdução de Genes/métodos , Técnicas de Silenciamento de Genes/métodos , Técnicas de Inativação de Genes/métodos , Estudos de Associação Genética , Testes Genéticos/métodos , Interferência de RNA , Biologia Computacional/métodos , Ensaios de Triagem em Larga Escala
11.
Neurooncol Adv ; 1(1): vdz024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32642659

RESUMO

BACKGROUND: Targeted approaches for inhibiting epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases (RTKs) in glioblastoma (GBM) have led to therapeutic resistance and little clinical benefit, raising the need for the development of alternative strategies. Endogenous LRIG1 (Leucine-rich Repeats and ImmunoGlobulin-like domains protein 1) is an RTK inhibitory protein required for stem cell maintenance, and we previously demonstrated the soluble ectodomain of LRIG1 (sLRIG1) to potently inhibit GBM growth in vitro and in vivo. METHODS: Here, we generated a recombinant protein of the ectodomain of LRIG1 (sLRIG1) and determined its activity in various cellular GBM models including patient-derived stem-like cells and patient organoids. We used proliferation, adhesion, and invasion assays, and performed gene and protein expression studies. Proximity ligation assay and NanoBiT complementation technology were applied to assess protein-protein interactions. RESULTS: We show that recombinant sLRIG1 downregulates EGFRvIII but not EGFR, and reduces proliferation in GBM cells, irrespective of their EGFR expression status. We find that sLRIG1 targets and downregulates a wide range of RTKs, including AXL, and alters GBM cell adhesion. Mechanistically, we demonstrate that LRIG1 interferes with AXL but not with EGFR dimerization. CONCLUSIONS: These results identify AXL as a novel sLRIG1 target and show that LRIG1-mediated RTK downregulation depends on direct protein interaction. The pan-RTK inhibitory activity of sLRIG1 warrants further investigation for new GBM treatment approaches.

12.
Nat Commun ; 10(1): 1787, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992437

RESUMO

The identity and unique capacity of cancer stem cells (CSC) to drive tumor growth and resistance have been challenged in brain tumors. Here we report that cells expressing CSC-associated cell membrane markers in Glioblastoma (GBM) do not represent a clonal entity defined by distinct functional properties and transcriptomic profiles, but rather a plastic state that most cancer cells can adopt. We show that phenotypic heterogeneity arises from non-hierarchical, reversible state transitions, instructed by the microenvironment and is predictable by mathematical modeling. Although functional stem cell properties were similar in vitro, accelerated reconstitution of heterogeneity provides a growth advantage in vivo, suggesting that tumorigenic potential is linked to intrinsic plasticity rather than CSC multipotency. The capacity of any given cancer cell to reconstitute tumor heterogeneity cautions against therapies targeting CSC-associated membrane epitopes. Instead inherent cancer cell plasticity emerges as a novel relevant target for treatment.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/genética , Plasticidade Celular/efeitos dos fármacos , Glioblastoma/genética , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/uso terapêutico , Biópsia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Plasticidade Celular/genética , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Resultado do Tratamento , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Elife ; 62017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231810

RESUMO

Disruption of the sumoylation/desumoylation equilibrium is associated with several disease states such as cancer and infections, however the mechanisms regulating the global SUMO balance remain poorly defined. Here, we show that infection by Shigella flexneri, the causative agent of human bacillary dysentery, switches off host sumoylation during epithelial cell infection in vitro and in vivo and that this effect is mainly mediated by a calcium/calpain-induced cleavage of the SUMO E1 enzyme SAE2, thus leading to sumoylation inhibition. Furthermore, we describe a mechanism by which Shigella promotes its own invasion by altering the sumoylation state of RhoGDIα, a master negative regulator of RhoGTPase activity and actin polymerization. Together, our data suggest that SUMO modification is essential to restrain pathogenic bacterial entry by limiting cytoskeletal rearrangement induced by bacterial effectors. Moreover, these findings identify calcium-activated calpains as powerful modulators of cellular sumoylation levels with potentially broad implications in several physiological and pathological situations.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Disenteria Bacilar/microbiologia , Interações Hospedeiro-Patógeno , Shigella flexneri/patogenicidade , Enzimas Ativadoras de Ubiquitina/metabolismo , Disenteria Bacilar/metabolismo , Disenteria Bacilar/patologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Células HeLa , Humanos , Proteólise , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo
14.
EMBO Mol Med ; 9(12): 1681-1695, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29054837

RESUMO

Heterozygous mutations in NADP-dependent isocitrate dehydrogenases (IDH) define the large majority of diffuse gliomas and are associated with hypermethylation of DNA and chromatin. The metabolic dysregulations imposed by these mutations, whether dependent or not on the oncometabolite D-2-hydroxyglutarate (D2HG), are less well understood. Here, we applied mass spectrometry imaging on intracranial patient-derived xenografts of IDH-mutant versus IDH wild-type glioma to profile the distribution of metabolites at high anatomical resolution in situ This approach was complemented by in vivo tracing of labeled nutrients followed by liquid chromatography-mass spectrometry (LC-MS) analysis. Selected metabolites were verified on clinical specimen. Our data identify remarkable differences in the phospholipid composition of gliomas harboring the IDH1 mutation. Moreover, we show that these tumors are characterized by reduced glucose turnover and a lower energy potential, correlating with their reduced aggressivity. Despite these differences, our data also show that D2HG overproduction does not result in a global aberration of the central carbon metabolism, indicating strong adaptive mechanisms at hand. Intriguingly, D2HG shows no quantitatively important glucose-derived label in IDH-mutant tumors, which suggests that the synthesis of this oncometabolite may rely on alternative carbon sources. Despite a reduction in NADPH, glutathione levels are maintained. We found that genes coding for key enzymes in de novo glutathione synthesis are highly expressed in IDH-mutant gliomas and the expression of cystathionine-ß-synthase (CBS) correlates with patient survival in the oligodendroglial subtype. This study provides a detailed and clinically relevant insight into the in vivo metabolism of IDH1-mutant gliomas and points to novel metabolic vulnerabilities in these tumors.


Assuntos
Neoplasias Encefálicas/patologia , Metabolismo Energético , Glioma/patologia , Isocitrato Desidrogenase/genética , Estresse Oxidativo , Fosfolipídeos/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Isótopos de Carbono/química , Feminino , Glioma/genética , Glioma/mortalidade , Humanos , Marcação por Isótopo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Isótopos de Nitrogênio/química , Fosfolipídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Taxa de Sobrevida , Células Tumorais Cultivadas
15.
Neuro Oncol ; 19(3): 383-393, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591677

RESUMO

Background: Invasion and angiogenesis are major hallmarks of glioblastoma (GBM) growth. While invasive tumor cells grow adjacent to blood vessels in normal brain tissue, tumor cells within neovascularized regions exhibit hypoxic stress and promote angiogenesis. The distinct microenvironments likely differentially affect metabolic processes within the tumor cells. Methods: In the present study, we analyzed gene expression and metabolic changes in a human GBM xenograft model that displayed invasive and angiogenic phenotypes. In addition, we used glioma patient biopsies to confirm the results from the xenograft model. Results: We demonstrate that the angiogenic switch in our xenograft model is linked to a proneural-to-mesenchymal transition that is associated with upregulation of the transcription factors BHLHE40, CEBPB, and STAT3. Metabolic analyses revealed that angiogenic xenografts employed higher rates of glycolysis compared with invasive xenografts. Likewise, patient biopsies exhibited higher expression of the glycolytic enzyme lactate dehydrogenase A and glucose transporter 1 in hypoxic areas compared with the invasive edge and lower-grade tumors. Analysis of the mitochondrial respiratory chain showed reduction of complex I in angiogenic xenografts and hypoxic regions of GBM samples compared with invasive xenografts, nonhypoxic GBM regions, and lower-grade tumors. In vitro hypoxia experiments additionally revealed metabolic adaptation of invasive tumor cells, which increased lactate production under long-term hypoxia. Conclusions: The use of glycolysis versus mitochondrial respiration for energy production within human GBM tumors is highly dependent on the specific microenvironment. The metabolic adaptability of GBM cells highlights the difficulty of targeting one specific metabolic pathway for effective therapeutic intervention.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Neovascularização Patológica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Hipóxia Celular , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/irrigação sanguínea , Glioblastoma/genética , Glioblastoma/patologia , Glicólise , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Ratos , Ratos Nus , Ativação Transcricional , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 7(22): 31955-71, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27049916

RESUMO

The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFß1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.


Assuntos
Comunicação Autócrina , Vasos Sanguíneos/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Comunicação Parácrina , Tecido Parenquimatoso/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Proteínas Angiogênicas/metabolismo , Animais , Vasos Sanguíneos/patologia , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Necrose , Invasividade Neoplásica , Neovascularização Patológica , Tecido Parenquimatoso/patologia , Fenótipo , Células Estromais/patologia , Fatores de Tempo , Transcriptoma , Fator de Crescimento Transformador beta1/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral
17.
Neuro Oncol ; 18(12): 1644-1655, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27286795

RESUMO

BACKGROUND: Amplification of the epidermal growth factor receptor (EGFR) and its mutant EGFRvIII are among the most common genetic alterations in glioblastoma (GBM), the most frequent and most aggressive primary brain tumor. METHODS: In the present work, we analyzed the clonal evolution of these major EGFR aberrations in a small cohort of GBM patients using a unique surgical multisampling technique. Furthermore, we overexpressed both receptors separately and together in 2 patient-derived GBM stem cell lines (GSCs) to analyze their functions in vivo in orthotopic xenograft models. RESULTS: In human GBM biopsies, we identified EGFR amplification as an early event because EGFRvIII mutations emerge from intratumoral heterogeneity later in tumor development. To investigate the biological relevance of this distinct developmental pattern, we established experimental model systems. In these models, EGFR+ tumor cells showed activation of classical downstream signaling pathways upon EGF stimulation and displayed enhanced invasive growth without evidence of angiogenesis in vivo. In contrast, EGFRvIII+ tumors were driven by activation of the prototypical Src family kinase c-Src that promoted VEGF secretion leading to angiogenic tumor growth. CONCLUSIONS: The presented work shows that sequential EGFR amplification and EGFRvIII mutations might represent concerted evolutionary events that drive the aggressive nature of GBM by promoting invasion and angiogenesis via distinct signaling pathways. In particular, c-SRC may be an attractive therapeutic target for tumors harboring EGFRvIII as we identified this protein specifically mediating angiogenic tumor growth downstream of EGFRvIII.


Assuntos
Neoplasias Encefálicas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Evolução Molecular , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imagem Multimodal , Mutação , Invasividade Neoplásica , Análise de Sobrevida , Regulação para Cima
19.
Ecancermedicalscience ; 9: 519, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25932043

RESUMO

The 'Precision Medicine for Cancer' was the first meeting of a new series of conferences organised biannually by the European Association for Cancer Research (EACR) and the Organisation for European Cancer Institutes (OECI). The main objective of the meeting was to focus on novel topics in precision medicine by allowing strong interactions between participants and to access the speakers easily. As the first implementations of personalised medicine are appreciated in the clinic, the aim of the meeting was to further educate both researchers and clinicians and learn more from the novel approaches in the field. Similarly, the interaction between two organisations-the research-oriented EACR and the clinic-oriented OECI-was of a great value for the meeting. This OECI-EACR 2015 report will highlight the major findings of this outstanding meeting.

20.
Mol Biol Cell ; 20(23): 4976-84, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19793920

RESUMO

A major regulatory function has been evidenced here for HSF1, the key transcription factor of the heat-shock response, in a large-scale remodeling of the cell epigenome. Indeed, upon heat shock, HSF1, in addition to its well-known transactivating activities, mediates a genome-wide and massive histone deacetylation. Investigating the underlying mechanisms, we show that HSF1 specifically associates with and uses HDAC1 and HDAC2 to trigger this heat-shock-dependent histone deacetylation. This work therefore identifies HSF1 as a master regulator of global chromatin acetylation and reveals a cross-talk between HSF1 and histone deacetylases in the general control of genome organization in response to heat shock.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genoma , Resposta ao Choque Térmico/genética , Fatores de Transcrição/metabolismo , Acetilação , Animais , Linhagem Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA