Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 19(6): 2236-2246, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302149

RESUMO

The high levels of docosahexaenoic acid (DHA) in cell membranes within the brain have led to a number of studies exploring its function. These studies have shown that DHA can reduce inflammatory responses in microglial cells. However, the method of action is poorly understood. Here, we report the effects of DHA on microglial cells stimulated with lipopolysaccharides (LPSs). Data were acquired using the parallel accumulation serial fragmentation method in a hybrid trapped ion mobility-quadrupole time-of-flight mass spectrometer. Over 2800 proteins are identified using label-free quantitative proteomics. Cells exposed to LPSs and/or DHA resulted in changes in cell morphology and expression of 49 proteins with differential abundance (greater than 1.5-fold change). The data provide details about pathways that are influenced in this system including the nuclear factor κ-light-chain-enhancer of the activated B cells (NF-κB) pathway. Western blots and enzyme-linked immunosorbent assay studies are used to help confirm the proteomic results. The MS data are available at ProteomeXchange.


Assuntos
Lipopolissacarídeos , Fármacos Neuroprotetores , Citocinas , Ácidos Docosa-Hexaenoicos/farmacologia , Lipopolissacarídeos/farmacologia , Microglia , NF-kappa B/genética , Proteômica
2.
Int J Mol Sci ; 20(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795510

RESUMO

High levels of docosahexaenoic acid (DHA) in the phospholipids of mammalian brain have generated increasing interest in the search for its role in regulating brain functions. Recent studies have provided evidence for enhanced protective effects when DHA is administered in combination with phytochemicals, such as quercetin. DHA and quercetin can individually suppress lipopolysaccharide (LPS)⁻induced oxidative/inflammatory responses and enhance the antioxidative stress pathway involving nuclear factor erythroid-2 related factor 2 (Nrf2). However, studies with BV-2 microglial cells indicated rather high concentrations of DHA (IC50 in the range of 60⁻80 µM) were needed to produce protective effects. To determine whether quercetin combined with DHA can lower the levels of DHA needed to produce protective effects in these cells is the goal for this study. Results showed that low concentrations of quercetin (2.5 µM), in combination with DHA (10 µM), could more effectively enhance the expression of Nrf2 and heme oxygenase 1 (HO-1), and suppress LPS⁻induced nitric oxide, tumor necrosis factor-α, phospho-cytosolic phospholipase A2, reactive oxygen species, and 4-hydroxynonenal, as compared to the same levels of DHA or quercetin alone. These results provide evidence for the beneficial effects of quercetin in combination with DHA, and further suggest their potential as nutraceuticals for improving health.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Peroxidação de Lipídeos , Microglia/metabolismo , Quercetina/farmacologia , Animais , Linhagem Celular , Heme Oxigenase-1/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosfolipases A/metabolismo
3.
J Neuroinflammation ; 15(1): 202, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986724

RESUMO

BACKGROUND: Phospholipids in the central nervous system are enriched in n-3 and n-6 polyunsaturated fatty acids (PUFA), especially docosahexaenoic acid (DHA) and arachidonic acid (ARA). These PUFA can undergo enzymatic reactions to produce lipid mediators, as well as reaction with oxygen free radicals to produce 4-hydroxyhexenal (4-HHE) from DHA and 4-hydroxynonenal (4-HNE) from ARA. Recent studies demonstrated pleiotropic properties of these peroxidation products through interaction with oxidative and anti-oxidant response pathways. In this study, BV-2 microglial cells were used to investigate ability for DHA, 4-HHE, and 4-HNE to stimulate the anti-oxidant stress responses involving the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and synthesis of heme oxygenase (HO-1), as well as to mitigate lipopolysaccharide (LPS)-induced nitric oxide (NO), reactive oxygen species (ROS), and cytosolic phospholipase A2 (cPLA2). In addition, LC-MS/MS analysis was carried out to examine effects of exogenous DHA and LPS stimulation on endogenous 4-HHE and 4-HNE levels in BV-2 microglial cells. METHODS: Effects of DHA, 4-HHE, and 4-HNE on LPS-induced NO production was determined using the Griess reagent. LPS-induced ROS production was measured using CM-H2DCFDA. Western blots were used to analyze expression of p-cPLA2, Nrf2, and HO-1. Cell viability and cytotoxicity were measured using the WST-1 assay, and cell protein concentrations were measured using the BCA protein assay kit. An ultra-high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to determine levels of free 4-HHE and 4-HNE in cells. RESULTS: DHA (12.5-100 µM), 4-HHE (1.25-10 µM), and 4-HNE (1.25-10 µM) dose dependently suppressed LPS-induced production of NO, ROS, and as p-cPLA2 in BV-2 microglial cells. With the same concentrations, these compounds could enhance Nrf2 and HO-1 expression in these cells. Based on the estimated IC50 values, 4-HHE and 4-HNE were five- to tenfold more potent than DHA in inhibiting LPS-induced NO, ROS, and p-cPLA2. LC-MS/MS analysis indicated ability for DHA (10-50 µM) to increase levels of 4-HHE and attenuate levels of 4-HNE in BV-2 microglial cells. Stimulation of cells with LPS caused an increase in 4-HNE which could be abrogated by cPLA2 inhibitor. In contrast, bromoenol lactone (BEL), a specific inhibitor for the Ca2+-independent phospholipase A2 (iPLA2), could only partially suppress levels of 4-HHE induced by DHA or DHA + LPS. CONCLUSIONS: This study demonstrated the ability of DHA and its lipid peroxidation products, namely, 4-HHE and 4-HNE at 1.25-10 µM, to enhance Nrf2/HO-1 and mitigate LPS-induced NO, ROS, and p-cPLA2 in BV-2 microglial cells. In addition, LC-MS/MS analysis of the levels of 4-HHE and 4-HNE in microglial cells demonstrates that increases in production of 4-HHE from DHA and 4-HNE from LPS are mediated by different mechanisms.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Aldeídos/metabolismo , Aldeídos/farmacologia , Animais , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfolipases A2/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Brain Behav Immun ; 59: 38-48, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27621225

RESUMO

Dietary supplementation with the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been shown to have a beneficial effect on reducing the symptoms associated with several neuropsychiatric conditions including anxiety and depression. However, the mechanisms underlying this effect remain largely unknown. Increasing evidence suggests that the vast repertoire of commensal bacteria within the gut plays a critical role in regulating various biological processes in the brain and may contribute to neuropsychiatric disease risk. The present study determined the contribution of DHA on anxiety and depressive-like behaviors through modulation of the gut microbiota in a paradigm of social isolation. Adult male and female mice were subjected to social isolation for 28days and then placed either on a control diet or a diet supplemented with 0.1% or 1.0% DHA. Fecal pellets were collected both 24h and 7days following the introduction of the new diets. Behavioral testing revealed that male mice fed a DHA diet, regardless of dose, exhibited reduced anxiety and depressive-like behaviors compared to control fed mice while no differences were observed in female mice. As the microbiota-brain-axis has been recently implicated in behavior, composition of microbial communities were analyzed to examine if these sex-specific effects of DHA may be associated with changes in the gut microbiota (GM). Clear sex differences were observed with males and females showing distinct microbial compositions prior to DHA supplementation. The introduction of DHA into the diet also induced sex-specific interactions on the GM with the fatty acid producing a significant effect on the microbial profiles in males but not in females. Interestingly, levels of Allobaculum and Ruminococcus were found to significantly correlate with the behavioral changes observed in the male mice. Predictive metagenome analysis using PICRUSt was performed on the fecal samples collected from males and identified enrichment in functional KEGG pathway terms relevant to processes such as the biosynthesis of unsaturated fatty acids and antioxidant metabolism. These results indicate that DHA alters commensal community composition and produces beneficial effects on anxiety and depressive-like behaviors in a sex-specific manner. The present study provides insight into the mechanistic role that gut microbes may play in the regulation of anxiety and depressive-like behaviors and how dietary intervention can modulate these effects.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Microbiota/efeitos dos fármacos , Isolamento Social , Animais , Ansiedade/psicologia , Depressão/psicologia , Dieta , Fezes/química , Feminino , Preferências Alimentares/efeitos dos fármacos , Microbioma Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Caracteres Sexuais
5.
Cell Biol Int ; 40(2): 131-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26377232

RESUMO

Sutherlandia frutescens is a medicinal plant, traditionally used to treat various types of human diseases, including cancer. Previous studies of several botanicals link suppression of prostate cancer growth with inhibition of the Gli/hedgehog (Gli/Hh) signaling pathway. Here we hypothesized the anti-cancer effect of S. frutescens was linked to its inhibition of the Gli/Hh signaling in prostate cancer. We found a dose- and time-dependent growth inhibition in human prostate cancer cells, PC3 and LNCaP, and mouse prostate cancer cell, TRAMP-C2, treated with S. frutescens methanol extract (SLE). We also observed a dose-dependent inhibition of the Gli-reporter activity in Shh Light II and TRAMP-C2QGli cells treated with SLE. In addition, SLE can inhibit Gli/Hh signaling by blocking Gli1 and Ptched1 gene expression in the presence of a Gli/Hh signaling agonist (SAG). A diet supplemented with S. frutescens suppressed the formation of poorly differentiated carcinoma in prostates of TRAMP mice. Finally, we found Sutherlandioside D was the most potent compound in the crude extract that could suppress Gli-reporter in Shh Light II cells. Together, this suggests that the S. frutescens extract may exert anti-cancer effect by targeting Gli/Hh signaling, and Sutherlandioside D is one of the active compounds.


Assuntos
Proteínas Hedgehog/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Extratos Vegetais/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Fabaceae/química , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos A , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Distribuição Aleatória , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco
6.
BMC Complement Altern Med ; 15: 434, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667305

RESUMO

BACKGROUND: The aging kidney is marked by a chronic inflammation, which may exacerbate the progression of renal dysfunction, as well as increase the susceptibility to acute injury. The identification of strategies to alleviate inflammation may have translational impact to attenuate kidney disease. METHODS: We tested the potential of ashwaganda, sutherlandia and elderberry on tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) induced chemokine (CCL2 and CCL5) expression in vitro. RESULTS: Elderberry water-soluble extract (WSE) was pro-inflammatory, while sutherlandia WSE only partially attenuated the TNF-α-induced changes in CCL5. However, ashwaganda WSE completely prevented TNF-α-induced increases in CCL5, while attenuating the increase in CCL2 expression and NF-κB activation. The same pattern of ashwagandha protection was seen using LPS as the pro-inflammatory stimuli. CONCLUSIONS: Taken together, these results demonstrate the ashwaganda WSE as a valid candidate for evaluation of therapeutic potential for the treatment of chronic renal dysfunction.


Assuntos
Quimiocina CCL2/genética , Quimiocina CCL5/genética , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Sambucus/química , Fator de Necrose Tumoral alfa/genética , Linhagem Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos/metabolismo , NF-kappa B/genética , Ativação Transcricional/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
7.
Neurobiol Learn Mem ; 116: 59-68, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25180934

RESUMO

Chronic deficiency of dietary docosahexaenoic acid (DHA) during critical developmental windows results in severe deficits in spatial learning, anxiety and hippocampal neuroplasticity that parallel a variety of neuropsychiatric disorders. However, little is known regarding the influence of long-term, multigenerational exposure to dietary DHA enrichment on these same traits. To characterize the potential benefits of multigenerational DHA enrichment, mice were fed a purified 10:1 omega-6/omega-3 diet supplemented with either 0.1% preformed DHA/kg feed weight or 1.0% preformed DHA/kg feed weight through three generations. General locomotor activity, spatial learning, and anxiety-like behavior were assessed in adult male offspring of the third generation. Following behavioral assessments, ventral and dorsal hippocampus was collected for DHA and arachidonic acid (AA) analysis. Animals consuming the 0.1% and 1.0% DHA diet did not differ from control animals for locomotor activity or on performance during acquisition learning, but made fewer errors and showed more stable across-day performance during reversal learning on the spatial task and showed less anxiety-like behavior. Consumption of the DHA-enriched diets increased DHA content in the ventral and dorsal hippocampus in a region-specific manner. DHA content in the dorsal hippocampus predicted performance on the reversal training task. DHA content in the ventral hippocampus was correlated with anxiety-like behavior, but AA content in the dorsal hippocampus was a stronger predictor of this behavior. These results suggest that long-term, multigenerational DHA administration improves performance on some aspects of complex spatial learning, decreases anxiety-like behavior, and that modulation of DHA content in sub-regions of the hippocampus predicts which behaviors are likely to be affected.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Ácidos Docosa-Hexaenoicos/metabolismo , Hipocampo/metabolismo , Aprendizagem Espacial/fisiologia , Animais , Ácido Araquidônico/metabolismo , Comportamento Animal/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Reversão de Aprendizagem/efeitos dos fármacos , Reversão de Aprendizagem/fisiologia , Aprendizagem Espacial/efeitos dos fármacos
8.
Mo Med ; 111(1): 41-3, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24645297

RESUMO

Should we listen to warnings that linoleic acid (LA) promotes inflammation and that Americans would be healthier if they restricted their intake of LA (i.e., vegetable oils)? A recently published systematic review of 15 clinical trials failed to find any support for the "diet LA causes inflammation hypothesis." These findings support current recommendations that a diet with 5 to 10 energy percentage from polyunsaturated fatty acids, such as LA, is healthful and appropriate for most Americans.


Assuntos
Inflamação/metabolismo , Ácido Linoleico/metabolismo , Biomarcadores/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Gorduras na Dieta/metabolismo , Ingestão de Energia , Comportamento Alimentar , Humanos
9.
J Neuroinflammation ; 10: 15, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23356518

RESUMO

BACKGROUND: The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag) and honokiol (Hon) are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, anti-inflammatory, and neuroprotective effects. In this study, we investigate the ability of these isomers to suppress oxidative stress in neurons stimulated by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) and oxidative and inflammatory responses in microglial cells activated by interferon-γ (IFNγ) and lipopolysaccharide (LPS). We also attempt to elucidate the mechanism and signaling pathways involved in cytokine-induced production of reactive oxygen species (ROS) in microglial cells. METHODS: Dihydroethidium (DHE) was used to assay superoxide production in neurons, while CM-H2DCF-DA was used to test for ROS production in murine (BV-2) and rat (HAPI) immortalized microglial cells. NADPH oxidase inhibitors (for example, diphenyleneiodonium (DPI), AEBSF, and apocynin) and immunocytochemistry targeting p47phox and gp91phox were used to assess the involvement of NADPH oxidase. Western blotting was used to assess iNOS and ERK1/2 expression, and the Griess reaction protocol was employed to determine nitric oxide (NO) concentration. RESULTS: Exposure of Hon and Mag (1-10 µM) to neurons for 24 h did not alter neuronal viability, but both compounds (10 µM) inhibited NMDA-stimulated superoxide production, a pathway known to involve NADPH oxidase. In microglial cells, Hon and Mag inhibited IFNγ±LPS-induced iNOS expression, NO, and ROS production. Studies with inhibitors and immunocytochemical assay further demonstrated the important role of IFNγ activating the NADPH oxidase through the p-ERK-dependent pathway. Hon and, to a lesser extent, Mag inhibited IFNγ-induced p-ERK1/2 and its downstream pathway for ROS and NO production. CONCLUSION: This study highlights the important role of NADPH oxidase in mediating oxidative stress in neurons and microglial cells and has unveiled the role of IFNγ in stimulating the MAPK/ERK1/2 signaling pathway for activation of NADPH oxidase in microglial cells. Hon and Mag offer anti-oxidative or anti-inflammatory effects, at least in part, through suppressing IFNγ-induced p-ERK1/2 and its downstream pathway.


Assuntos
Compostos de Bifenilo/farmacologia , Mediadores da Inflamação/fisiologia , Lignanas/farmacologia , Magnolia , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Compostos de Bifenilo/química , Compostos de Bifenilo/uso terapêutico , Linhagem Celular Transformada , Células Cultivadas , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Lignanas/química , Lignanas/uso terapêutico , Camundongos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
10.
Biomolecules ; 13(7)2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37509132

RESUMO

BACKGROUND: A large number of individual potentially modifiable factors are associated with risk for Alzheimer's disease (AD). However, less is known about the interactions between the individual factors. METHODS: In order to begin to examine the relationship between a pair of factors, we performed a pilot study, surveying patients with AD and controls for stress exposure and dietary omega-3 fatty acid intake to explore their relationship for risk of AD. RESULTS: For individuals with the greatest stress exposure, omega-3 fatty acid intake was significantly greater in healthy controls than in AD patients. There was no difference among those with low stress exposure. CONCLUSIONS: These initial results begin to suggest that omega-3 fatty acids may mitigate AD risk in the setting of greater stress exposure. This will need to be examined with larger populations and other pairs of risk factors to better understand these important relationships. Examining how individual risk factors interact will ultimately be important for learning how to optimally decrease the risk of AD.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/complicações , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Projetos Piloto , Ácidos Graxos Ômega-3/farmacologia , Dieta , Ácidos Graxos
11.
Am J Physiol Gastrointest Liver Physiol ; 303(8): G979-92, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22899824

RESUMO

Studies have shown that decreased mitochondrial content and function are associated with hepatic steatosis. We examined whether peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) overexpression and a subsequent increase in mitochondrial content and function in rat primary hepatocytes (in vitro) and Sprague-Dawley rats (in vivo) would comprehensively alter mitochondrial lipid metabolism, including complete (CO(2)) and incomplete (acid-soluble metabolites) fatty acid oxidation (FAO), tricarboxylic acid cycle flux, and triacylglycerol (TAG) storage and export. PGC-1α overexpression in primary hepatocytes produced an increase in markers of mitochondrial content and function (citrate synthase, mitochondrial DNA, and electron transport system complex proteins) and an increase in FAO, which was accompanied by reduced TAG storage and TAG secretion compared with control. Also, the PGC-1α-overexpressing hepatocytes were protected from excess TAG accumulation following overnight lipid treatment. PGC-1α overexpression in hepatocytes lowered expression of genes critical to VLDL assembly and secretion (apolipoprotein B and microsomal triglyceride transfer protein). Adenoviral transduction of rats with PGC-1α resulted in a liver-specific increase in PGC-1α expression and produced an in vivo liver phenotype of increased FAO via increased mitochondrial function that also resulted in reduced hepatic TAG storage and decreased plasma TAG levels. In conclusion, overexpression of hepatic PGC-1α and subsequent increases in FAO through elevated mitochondrial content and/or function result in reduced TAG storage and secretion in the in vitro and in vivo milieu.


Assuntos
Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Animais , Apolipoproteínas B/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética
12.
J Nutr ; 142(8): 1582-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22695969

RESUMO

Dietary ingestion of (n-3) PUFA alters the production of eicosanoids and can suppress chronic inflammatory and autoimmune diseases. The extent of changes in eicosanoid production during an infection of mice fed a diet high in (n-3) PUFA, however, has not, to our knowledge, been reported. We fed mice a diet containing either 18% by weight soybean oil (SO) or a mixture with fish oil (FO), FO:SO (4:1 ratio), for 2 wk and then infected them with Borrelia burgdorferi. We used an MS-based lipidomics approach and quantified changes in eicosanoid production during Lyme arthritis development over 21 d. B. burgdorferi infection induced a robust production of prostanoids, mono-hydroxylated metabolites, and epoxide-containing metabolites, with 103 eicosanoids detected of the 139 monitored. In addition to temporal and compositional changes in the eicosanoid profile, dietary FO substitution increased the accumulation of 15-deoxy PGJ(2), an antiinflammatory metabolite derived from arachidonic acid. Chiral analysis of the mono-hydroxylated metabolites revealed they were generated from primarily nonenzymatic mechanisms. Although dietary FO substitution reduced the production of inflammatory (n-6) fatty acid-derived eicosanoids, no change in the host inflammatory response or development of disease was detected.


Assuntos
Gorduras Insaturadas na Dieta/farmacologia , Eicosanoides/metabolismo , Óleos de Peixe/farmacologia , Articulações/metabolismo , Doença de Lyme/dietoterapia , Doença de Lyme/metabolismo , Ração Animal , Animais , Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Graxos/sangue , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Óleos de Peixe/administração & dosagem , Membro Posterior , Temperatura Alta , Articulações/patologia , Fígado/química , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C3H
13.
Biol Sex Differ ; 12(1): 10, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422127

RESUMO

Early life adversity is widely recognized as a key risk factor for early developmental perturbations and contributes to the presentation of neuropsychiatric disorders in adulthood. Neurodevelopmental disorders exhibit a strong sex bias in susceptibility, presentation, onset, and severity, although the underlying mechanisms conferring vulnerability are not well understood. Environmental perturbations during pregnancy, such as malnutrition or stress, have been associated with sex-specific reprogramming that contribute to increased disease risk in adulthood, whereby stress and nutritional insufficiency may be additive and further exacerbate poor offspring outcomes. To determine whether maternal supplementation of docosahexanoic acid (DHA) exerts an effect on offspring outcome following exposure to early prenatal stress (EPS), dams were fed a purified 10:1 omega-6/omega-3 diet supplemented with either 1.0% preformed DHA/kg feed weight (DHA-enriched) or no additional DHA (denoted as the control diet, CTL). Dams were administered chronic variable stress during the first week of pregnancy (embryonic day, E0.5-7.5), and developmental milestones were assessed at E 12.5. Exposure to early prenatal stress (EPS) decreased placenta and embryo weight in males, but not females, exposed to the CTL diet. DHA enrichment reversed the sex-specific decrease in placenta and embryo weight following EPS. Early prenatal exposure upregulated expression of genes associated with oxygen and nutrient transport, including hypoxia inducible factor 3α (HIF3α), peroxisome proliferator-activated receptor alpha (PPARα), and insulin-like growth binding factor 1 (IGFBP1), in the placenta of CTL diet males exposed to EPS. DHA enrichment in EPS-exposed animals abrogated the male-specific upregulation of PPARα, HIF3α, and IGFBP1. Taken together, these studies suggest that maternal dietary DHA enrichment may buffer against maternal stress programming of sex-specific outcomes during early development.


Assuntos
Placenta , Animais , Suplementos Nutricionais , Feminino , Expressão Gênica , Masculino , PPAR alfa , Gravidez , Caracteres Sexuais
14.
Neuromolecular Med ; 23(1): 118-129, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32926329

RESUMO

The abundance of docosahexaenoic acid (DHA) in phospholipids in the brain and retina has generated interest to search for its role in mediating neurological functions. Besides the source of many oxylipins with pro-resolving properties, DHA also undergoes peroxidation, producing 4-hydroxyhexenal (4-HHE), although its function remains elusive. Despite wide dietary consumption, whether supplementation of DHA may alter the peroxidation products and their relationship to phospholipid species in brain and other body organs have not been explored sufficiently. In this study, adult mice were administered a control or DHA-enriched diet for 3 weeks, and phospholipid species and peroxidation products were examined in brain, heart, and plasma. Results demonstrated that this dietary regimen increased (n-3) and decreased (n-6) species to different extent in all major phospholipid classes (PC, dPE, PE-pl, PI and PS) examined. Besides changes in phospholipid species, DHA-enriched diet also showed substantial increases in 4-HHE in brain, heart, and plasma. Among different brain regions, the hippocampus responded to the DHA-enriched diet showing significant increase in 4-HHE. Considering the pro- and anti-inflammatory pathways mediated by the (n-6) and (n-3) polyunsaturated fatty acids, unveiling the ability for DHA-enriched diet to alter phospholipid species and lipid peroxidation products in the brain and in different body organs may be an important step forward towards understanding the mechanism(s) for this (n-3) fatty acid on health and diseases.


Assuntos
Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Coração/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Miocárdio/metabolismo , Fosfolipídeos/metabolismo , Aldeídos/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Ácidos Docosa-Hexaenoicos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Oxirredução , Fosfolipídeos/análise , Plasma , Distribuição Aleatória , Espectrometria de Massas em Tandem
15.
J Biol Chem ; 284(49): 33949-56, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19808669

RESUMO

Copper is an essential micronutrient that is necessary for healthy immune function. This requirement is underscored by an increased susceptibility to bacterial infection in copper-deficient animals; however, a molecular understanding of its importance in immune defense is unknown. In this study, we investigated the effect of proinflammatory agents on copper homeostasis in RAW264.7 macrophages. Interferon-gamma was found to increase expression of the high affinity copper importer, CTR1, and stimulate copper uptake. This was accompanied by copper-stimulated trafficking of the ATP7A copper exporter from the Golgi to vesicles that partially overlapped with phagosomal compartments. Silencing of ATP7A expression attenuated bacterial killing, suggesting a role for ATP7A-dependent copper transport in the bactericidal activity of macrophages. Significantly, a copper-sensitive mutant of Escherichia coli lacking the CopA copper-transporting ATPase was hypersensitive to killing by RAW264.7 macrophages, and this phenotype was dependent on ATP7A expression. Collectively, these data suggest that copper-transporting ATPases, CopA and ATP7A, in both bacteria and macrophage are unique determinants of bacteria survival and identify an unexpected role for copper at the host-pathogen interface.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobre/química , Macrófagos/metabolismo , Animais , Anti-Infecciosos/química , Transporte Biológico , Linhagem Celular , Ceruloplasmina/metabolismo , ATPases Transportadoras de Cobre , Proteínas de Escherichia coli , Regulação Enzimológica da Expressão Gênica , Complexo de Golgi/metabolismo , Camundongos , Fagocitose , Fagossomos/metabolismo , Transporte Proteico
16.
Cell Immunol ; 264(2): 119-26, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20547386

RESUMO

To better understand the relative efficiencies of using different TLR ligand-activated DCs to induce human CD4(+) T lymphocyte responses, human DCs were activated with two viral and two bacterial TLR ligands, and their production of IL12, TNFalpha, and IL10 was examined. While the two viral TLR ligands (ssRNA and dsRNA) induced DC production of detectable levels of IL12p70, DCs activated by the two bacterial TLR ligands (LPS and flagellin) induced increased proliferation of human allogeneic naïve CD4(+) T cells. dsRNA-activated DCs induced increased Th1 and decreased Th2 differentiation, resulting in extremely polarized responses relative to those induced by unstimulated and other TLR ligand-activated DCs. Neutralization of IL12p70 abrogated most of the Th1 skewing induced by all TLR ligand-activated moDCs. Collectively, these results demonstrate that dsRNA-activated DCs induce more highly polarized human Th1 responses than the other TLR ligand-activated DCs tested here. These results have implications for TLR ligands in immunotherapy.


Assuntos
Células Dendríticas/metabolismo , Imunoterapia , RNA de Cadeia Dupla/imunologia , Células Th1/imunologia , Receptores Toll-Like/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/patologia , Flagelina/imunologia , Flagelina/metabolismo , Humanos , Interleucina-10/biossíntese , Interleucina-12/genética , Interleucina-12/metabolismo , Ligantes , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Teste de Cultura Mista de Linfócitos , Vírus de RNA/imunologia , Vírus de RNA/metabolismo , RNA de Cadeia Dupla/metabolismo , Células Th2/imunologia , Fator de Necrose Tumoral alfa/biossíntese
17.
Exp Ther Med ; 19(2): 1554-1559, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32010338

RESUMO

Garlic (Allium sativum) has been widely used for culinary and medicinal purposes. Aged garlic extract (AGE) and sulfur-containing compounds, including S-allylcysteine (SAC) are well documented botanical active components of garlic. AGE is prepared by the prolonged extraction of fresh garlic with aqueous ethanol and is considered a nutritional supplement with potential to promote human health. SAC is a water-soluble organosulfur compound and the most abundant component of AGE. Studies have demonstrated that both AGE and SAC can exert neuroprotective effects against neuroinflammation and neurodegeneration. Another bioactive component in AGE is N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg) although less is known about the metabolic activity of this compound. The main aim of this review was to provide an undated overview of the neuroprotective perspectives of these active garlic components (AGE, SAC and FruArg). Of interest, our studies and those of others indicate that both AGE and FruArg are involved in the regulation of gene transcription and protein expression. AGE has been shown to reverse 67% of the transcriptome alteration induced by endotoxins-lipopolysaccharide (LPS), and FruArg has been shown to account for the protective effects by reversing 55% of genes altered in a cell-based neuroinflammation paradigm stimulated by LPS in murine BV-2 microglial cells. AGE and FruArg can alleviate neuroinflammatory responses through a variety of signaling pathways, such as Toll-like receptor and interleukin (IL)-6 signaling, as well as by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress pathways known to promote microglial resiliency against neuroinflammation and neurodegeneration. The capability of FruArg to pass through the blood-brain barrier further supports its potential as a therapeutic compound. In summary, these experimental results provide new insight into the understanding of the neuroprotective effects of garlic components in promoting brain resiliency for health benefits.

18.
Med Res Arch ; 8(3)2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34222651

RESUMO

Aging is a risk factor for chronic kidney disease (CKD) and is itself associated with alterations in renal structure and function. There are no specific interventions to attenuate age-dependent renal dysfunction and the mechanism(s) responsible for these deficits have not been fully elucidated. In this study, male Fischer 344 rats, which develop age-dependent nephropathy, were feed a casein- or soy protein diet beginning at 16 mon (late life intervention) and renal structure and function was assessed at 20 mon. The soy diet did not significantly affect body weight, but was renoprotective as assessed by decreased proteinuria, increased glomerular filtration rate (GFR) and decreased urinary kidney injury molecule-1 (Kim-1). Renal fibrosis, as assessed by hydroxyproline content, was decreased by the soy diet, as were several indicators of inflammation. RNA sequencing identified several candidates for the renoprotective effects of soy, including decreased expression of Twist2, a basic helix-loop-helix transcription factor that network analysis suggest may regulate the expression of several genes associated with renal dysfunction. Twist2 expression is upregulated in the aging kidney and the unilateral ureteral obstruction of fibrosis; the expression is limited to distal tubules of mice. Taken together, these data demonstrate the renoprotective potential of soy protein, putatively by reducing inflammation and fibrosis, and identify Twist2 as a novel mediator of renal dysfunction that is targeted by soy.

19.
J Endocrinol ; 245(1): 165-178, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32053493

RESUMO

Loss of ovarian hormones leads to increased adiposity and insulin resistance (IR), increasing the risk for cardiovascular and metabolic diseases. The purpose of this study was to investigate whether the molecular mechanism behind the adverse systemic and adipose tissue-specific metabolic effects of ovariectomy requires loss of signaling through estrogen receptor alpha (ERα) or estrogen receptor ß (ERß). We examined ovariectomized (OVX) and ovary-intactwild-type (WT), ERα-null (αKO), and ERß-null (ßKO) female mice (age ~49 weeks; n = 7-12/group). All mice were fed a phytoestrogen-free diet (<15 mg/kg) and either remained ovary-intact (INT) or were OVX and followed for 12 weeks. Body composition, energy expenditure, glucose tolerance, and adipose tissue gene and protein expression were analyzed. INT αKO were ~25% fatter with reduced energy expenditure compared to age-matched INT WT controls and ßKO mice (all P < 0.001). Following OVX, αKO mice did not increase adiposity or experience a further increase in IR, unlike WT and ßKO, suggesting that loss of signaling through ERα mediates OVX-induced metabolic dysfunction. In fact, OVX in αKO mice (i.e., signaling through ERß in the absence of ERα) resulted in reduced adiposity, adipocyte size, and IR (P < 0.05 for all). ßKO mice responded adversely to OVX in terms of increased adiposity and development of IR. Together, these findings challenge the paradigm that ERα mediates metabolic protection over ERß in all settings. These findings lead us to suggest that, following ovarian hormone loss, ERß may mediate protective metabolic benefits.


Assuntos
Adiposidade/genética , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Resistência à Insulina/genética , Ovariectomia , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Composição Corporal/genética , Metabolismo Energético/genética , Receptor alfa de Estrogênio/deficiência , Receptor beta de Estrogênio/deficiência , Feminino , Expressão Gênica , Humanos , Leptina/genética , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética
20.
Br J Nutr ; 102(7): 1024-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19397837

RESUMO

A commercially available vegetable oil containing a high concentration (87 %, w/w) of diacylglycerol (DAG) has been investigated in humans and animals for potential beneficial effects in reducing serum TAG concentrations in fasting and postprandial states. Effects of DAG oil as a sole dietary fat source (25 % metabolisable energy) were evaluated in a feline model of hypertriacylglycerolaemia. Eleven adult (1.5 (sem 0.1) years) male cats deficient of lipoprotein lipase (LPL) catalytic activity from a heritable point mutation of the LPL gene were acclimatised to a semi-purified diet containing TAG oil for 21 d. After assignment into two groups, pair-matched by serum TAG concentrations (range 6.1-31.6 mmol/l), the cats were fed the diet with either TAG or DAG oil for 8 d. The dietary fat source was crossed-over and presented for 8 d more. Non-fasting serum concentrations of TAG, cholesterol and NEFA were measured on days 6-8 and days 14-16. Dietary fat source (DAG v. TAG) did not significantly affect food intake (491 (sem 16) v. 486 (sem 14) kJ/kg0.67), body weight or serum concentrations (mmol/l) of TAG (37.1 (sem 4.5) v. 33.9 (sem 3.4)), cholesterol (4.8 (sem 0.3) v. 4.8 (sem 0.2)) and NEFA (1.4 (sem 0.2) v. 1.4 (sem 0.2)). The results show that for a feeding trial of 8 d, DAG oil was well accepted and tolerated by cats but did not reduce hypertriacylglycerolaemia resulting from a deficiency of LPL catalytic activity.


Assuntos
Diglicerídeos/uso terapêutico , Hipertrigliceridemia/dietoterapia , Lipase Lipoproteica/deficiência , Óleos de Plantas/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Gatos , Colesterol/sangue , Dieta , Gorduras na Dieta/uso terapêutico , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Hipertrigliceridemia/sangue , Hipertrigliceridemia/etiologia , Masculino , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA