Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877535

RESUMO

BACKGROUND: This study evaluated for the first time the potential of orange passion fruit as a base for alcoholic and acetic fermentations, with a view to assessing its profile of organic acids and polyphenols, in vitro digestion, and biological activities. RESULTS: In terms of aliphatic organic acids, malic acid was the majority in the wine (3.19 g L-1), while in the vinegar, it was acetic acid (46.84 g L-1). 3,4-Dihydroxybenzoic acid (3,4-DHB) was the major phenolic compound in the wine and vinegar samples (3443.93 and 2980.00 µg L-1, respectively). After the in vitro gastrointestinal simulation stage, the wine showed high bioaccessibility for the compounds sinipaldehyde (82.97%) and 2,4-dihydroxybenzoic acid (2,4-DHBA, 81.27%), while the vinegar exhibited high bioaccessibility for sinipaldehyde (89.39%). Through multivariate analysis, it was observed that 3,4-DHB was highly concentrated in the different digested fractions obtained from the wine. In contrast, in the vinegar, the stability of isorahmenetin and Quercetin 3-o-rhamnoside was observed during the in vitro digestion simulation. Lastly, the vinegar stood out for its inhibition rates of α-amylase (23.93%), α-glucoside (18.34%), and angiotensin-converting enzyme (10.92%). In addition, the vinegar had an inhibitory effect on the pathogenic microorganisms Salmonella enteritidis, Escherichia coli, and Listeria monocytogenes. CONCLUSION: Orange passion fruit has proved to be a promising raw material for the development of fermented beverages. Therefore, this study provides an unprecedented perspective on the use and valorization of orange passion fruit, contributing significantly to the advancement of knowledge about fermented products and the associated nutritional and functional possibilities. © 2024 Society of Chemical Industry.

2.
Food Technol Biotechnol ; 61(2): 179-190, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37457911

RESUMO

Mead is a fermented alcoholic beverage that is made from honey diluted in water and commonly with the addition of other ingredients. The chemical characteristics of mead are closely related to the ingredients and additives that are used in its preparation, especially the type of honey, yeast strain and prefermentation nutrients, as well as herbs, spices and/or fruits. These additives can affect not only the fermentation process, in particular the yeast activity, the formation of metabolites and fermentation time, but also the bioactive potential of the mead, which mainly depends on phenolic compounds. Scientific studies have shown that the mead with added different plant species contains considerable amounts of different classes of polyphenols, which have important biological activities. Within this context, this review study seeks to investigate how different ingredients and additives can affect each of the stages of the preparation of mead, as well as its bioactive potential, in order to understand the effects on its chemical composition, and thus add greater commercial value to this beverage.

3.
Food Res Int ; 191: 114731, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059924

RESUMO

The recovery of bioactive compounds is a promising approach for obtaining rich extracts from fruit by-products. This study investigated the influence of Natural Deep Eutectic Solvents (NADES) and Ultrasound-Assisted Extraction (UAE) on the phenolic content, antioxidant capacity, and in vitro antidiabetic activity of Psidium myrtoides by-product. Among eight NADES evaluated based on choline chloride, NADES ChCl:Gly (1:2) was selected for its efficiency in extracting total phenolic compounds (TPC) with high antioxidant capacity. The optimized conditions were 61 °C, a solid-liquid ratio of 100 mg 5 mL-1, and a 60-minute extraction time. ChCl:Gly exhibited superior TPC recovery (2.6-fold greater effectiveness) compared to the 60 % hydroethanolic solution. Twenty-six phenolic compounds were identified, including significant levels of catechin (336.48 mg g-1) and isoquercetin (26.09 mg g-1). Phenolic acids, such as p-anisic acid (5.47 mg g-1) and methoxyphenylacetic acid (0.23 mg g-1), were identified for the first time in the purple araçá by-product. The ChCl:Gly extract demonstrated the highest bioactivity, showcasing antioxidant and antidiabetic capacities. This study introduces an innovative and sustainable alternative for recovering phenolic compounds from fruit by-products, offering enhanced recovery efficiency and/or selectivity compared to organic solvents.


Assuntos
Antioxidantes , Solventes Eutéticos Profundos , Frutas , Fenóis , Extratos Vegetais , Psidium , Fenóis/análise , Fenóis/isolamento & purificação , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/análise , Psidium/química , Solventes Eutéticos Profundos/química , Frutas/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/química , Hipoglicemiantes/análise , Ondas Ultrassônicas , Química Verde , Solventes/química
4.
Nat Prod Res ; : 1-6, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38146231

RESUMO

The Eugenia pyriformis Cambess (uvaia) is a well-known source of bioactive compounds. This study investigated the efficiency of Ultrasound-Assisted Extraction (UAE) and Enzyme-Assisted Extraction (EAE) in obtaining uvaia leaf extracts with high antioxidant and antibacterial activity. In a first step, different variables of the leaves were employed to define the best conditions for obtaining the extract with the highest total phenolic content. In a second step, the optimised extracts were characterised. In total, twenty-four phenolic compounds were identified through LC-ESI-MS/MS. The EAE in optimised conditions showed a higher amount of total phenolic compounds and antioxidant potential. It was possible to note an analogous potential of antibacterial activity of the extracts, which showed action mainly against Gram-positive bacteria. These findings suggest that the aqueous extracts of uvaia leaves are feasible, economic, and sustainable alternatives for adding value to uvaia leaves, which are an agricultural residue that is generally underutilised.

5.
Food Chem ; 141(1): 60-5, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23768327

RESUMO

The aim of this study was to characterise the bioactive compounds in mate (Ilex paraguariensis St. Hil) extract and in concentrated mate extract obtained by nanofiltration (NF). Also, the impact of NF on the antioxidant activity of both mate extracts was evaluated in vitro and using eukaryotic cells of Saccharomyces cerevisiae (yeast assay). The results showed a significant increase in the contents of total phenolics (338%), chlorogenic acid (483%), theobromine (323%), caffeine (251%), chlorophyll (321%), condensed tannins (278%) and saponins (211%) in the concentrated mate extract. The concentrated mate extract showed higher in vitro antioxidant activity than the mate extract. According to the results obtained, it can be stated that the use of nanofiltration membrane is a valid approach for the concentration of biologically active compounds in aqueous extract of mate.


Assuntos
Filtração/métodos , Ilex paraguariensis/química , Extratos Vegetais/isolamento & purificação , Cafeína/análise , Cafeína/isolamento & purificação , Ácido Clorogênico/análise , Ácido Clorogênico/isolamento & purificação , Filtração/instrumentação , Extratos Vegetais/análise , Saponinas/análise , Saponinas/isolamento & purificação
6.
Ciênc. rural ; 42(9): 1694-1700, set. 2012. ilus, tab
Artigo em Português | LILACS | ID: lil-648477

RESUMO

O objetivo do trabalho foi avaliar o potencial do soro de leite líquido como agente encapsulante de Bifidobacterium Bb-12 por spray drying, comparando-o com a goma arábica, a qual é tradicionalmente utilizada na tecnologia de microencapsulação. Foram determinados o rendimento da microencapsulação e a viabilidade das microcápsulas durante o armazenamento. Quando o soro de leite foi utilizado como agente encapsulante, o rendimento da microencapsulação foi maior e a viabilidade das células manteve-se elevada e constante durante doze semanas. O soro de leite apresentou-se como um eficiente agente encapsulante de Bifidobacterium por spray drying.


The objective of this study was to evaluate the potential of liquid whey as the encapsulating agent Bifidobacterium Bb-12 by spray drying, compared with arabic gum, which is typically used in microencapsulation technology. The microencapsulation yield and viability during storage were determined. When the whey was used as the encapsulating agent, the microencapsulation yield was higher, and cell viability remained high and steady for twelve weeks. The whey was shown to be an effective encapsulating agent of Bifidobacterium by spray drying.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA