Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0122523, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877718

RESUMO

IMPORTANCE: Alphavirus replicons are being developed as self-amplifying RNAs aimed at improving the efficacy of mRNA vaccines. These replicons are convenient for genetic manipulations and can express heterologous genetic information more efficiently and for a longer time than standard mRNAs. However, replicons mimic many aspects of viral replication in terms of induction of innate immune response, modification of cellular transcription and translation, and expression of nonstructural viral genes. Moreover, all replicons used in this study demonstrated expression of heterologous genes in cell- and replicon's origin-specific modes. Thus, many aspects of the interactions between replicons and the host remain insufficiently investigated, and further studies are needed to understand the biology of the replicons and their applicability for designing a new generation of mRNA vaccines. On the other hand, our data show that replicons are very flexible expression systems, and additional modifications may have strong positive impacts on protein expression.


Assuntos
Alphavirus , Regulação Viral da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Replicon , Proteínas Virais , Alphavirus/genética , Alphavirus/metabolismo , Vacinas de mRNA/genética , Replicon/genética , Replicação Viral/genética , RNA Viral/biossíntese , RNA Viral/genética , Interações entre Hospedeiro e Microrganismos/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética
2.
J Virol ; 97(11): e0097923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902397

RESUMO

IMPORTANCE: Our study highlights the mechanisms behind the cell's resistance to stress granule (SG) formation after infection with Old World alphaviruses. Shortly after infection, the replication of these viruses hinders the cell's ability to form SGs, even when exposed to chemical inducers such as sodium arsenite. This resistance is primarily attributed to virus-induced transcriptional and translational shutoffs, rather than interactions between the viral nsP3 and the key components of SGs, G3BP1/2, or the ADP-ribosylhydrolase activity of nsP3 macro domain. While interactions between G3BPs and nsP3 are essential for the formation of viral replication complexes, their role in regulating SG development appears to be small, if any. Cells harboring replicating viruses or replicons with lower abilities to inhibit transcription and/or translation, but expressing wild-type nsP3, retain the ability for SG development. Understanding these mechanisms of regulation of SG formation contributes to our knowledge of viral replication and the intricate relationships between alphaviruses and host cells.


Assuntos
Alphavirus , DNA Helicases , Interações entre Hospedeiro e Microrganismos , Biossíntese de Proteínas , Grânulos de Estresse , Transcrição Gênica , Alphavirus/fisiologia , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Replicon , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos de Estresse/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
3.
J Virol ; 97(3): e0186522, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36847528

RESUMO

Replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly affects cellular metabolism and results in rapid development of the cytopathic effect (CPE). The hallmarks of virus-induced modifications are inhibition of translation of cellular mRNAs and redirection of the cellular translational machinery to the synthesis of virus-specific proteins. The multifunctional nonstructural protein 1 (nsp1) of SARS-CoV-2 is a major virulence factor and a key contributor to the development of translational shutoff. In this study, we applied a wide range of virological and structural approaches to further analyze nsp1 functions. The expression of this protein alone was found to be sufficient to cause CPE. However, we selected several nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations were detected in three clusters, located in the C-terminal helices, in one of the loops of the structured domain and in the junction of the disordered and structured fragment of nsp1. NMR-based analysis of the wild type nsp1 and its mutants did not confirm the existence of a stable ß5-strand that was proposed by the X-ray structure. In solution, this protein appears to be present in a dynamic conformation, which is required for its functions in CPE development and viral replication. The NMR data also suggest a dynamic interaction between the N-terminal and C-terminal domains. The identified nsp1 mutations make this protein noncytotoxic and incapable of inducing translational shutoff, but they do not result in deleterious effects on viral cytopathogenicity. IMPORTANCE The nsp1 of SARS-CoV-2 is a multifunctional protein that modifies the intracellular environment for the needs of viral replication. It is responsible for the development of translational shutoff, and its expression alone is sufficient to cause a cytopathic effect (CPE). In this study, we selected a wide range of nsp1 mutants exhibiting noncytopathic phenotypes. The attenuating mutations, clustered in three different fragments of nsp1, were extensively characterized via virological and structural methods. Our data strongly suggest interactions between the nsp1 domains, which are required for the protein's functions in CPE development. Most of the mutations made nsp1 noncytotoxic and incapable of inducing translational shutoff. Most of them did not affect the viability of the viruses, but they did decrease the rates of replication in cells competent in type I IFN induction and signaling. These mutations, and their combinations, in particular, can be used for the development of SARS-CoV-2 variants with attenuated phenotypes.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
4.
J Virol ; 96(15): e0075322, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876526

RESUMO

Circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the human population leads to further viral evolution. The new variants that arise during this evolution are more infectious. Our data suggest that newer variants have shifted from utilizing both cathepsin/endosome- and TMPRSS2-mediated entry mechanisms to rely on a TMPRSS2-dependent entry pathway. Accordingly, only the early lineages of SARS-CoV-2 are capable of infecting and forming syncytia in Vero/ACE2 cells which lack TMPRSS2 expression. The presence of an intact multibasic furin cleavage site (FCS) in the S protein was a key requirement for cell-to-cell fusion. Deletion of FCS makes SARS-CoV-2 more infectious in vitro but renders it incapable of syncytium formation. Cell-to-cell fusion likely represents an alternative means of virus spread and is resistant to the presence of high levels of neutralizing monoclonal antibodies (MAbs) and immune sera in the media. In this study, we also noted that cells infected with SARS-CoV-2 with an intact FCS or alphavirus replicon expressing S protein (VEErep/S) released high levels of free S1 subunit. The released S1 is capable of activating the TLR4 receptor and inducing a pro-inflammatory response. Thus, S1 activation of TLR4 may be an important contributor to SARS-CoV-2-induced COVID-19 disease and needs to be considered in the design of COVID mRNA vaccines. Lastly, a VEErep/S-replicon was shown to produce large amounts of infectious, syncytium-forming pseudoviruses and thus could represent alternative experimental system for screening inhibitors of virus entry and syncytium formation. IMPORTANCE The results of this study demonstrate that the late lineages of SARS-CoV-2 evolved to more efficient use of the TMPRSS2-mediated entry pathway and gradually lost an ability to employ the cathepsins/endosome-mediated entry. The acquisition of a furin cleavage site (FCS) by SARS-CoV-2-specific S protein made the virus a potent producer of syncytia. Their formation is also determined by expression of ACE2 and TMPRSS2 and is resistant to neutralizing human MAbs and immune sera. Syncytium formation appears to be an alternative means of infection spread following the development of an adaptive immune response. Cells infected with SARS-CoV-2 with an intact FCS secrete high levels of the S1 subunit. The released S1 demonstrates an ability to activate the TLR4 receptor and induce pro-inflammatory cytokines, which represent a hallmark of SARS-CoV-2 pathogenesis. Alphavirus replicons encoding SARS-CoV-2 S protein cause spreading, syncytium-forming infection, and they can be applied as an experimental tool for studying the mechanism of syncytium formation.


Assuntos
COVID-19 , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Evolução Molecular , Furina/metabolismo , Humanos , Soros Imunes , SARS-CoV-2/genética , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Receptor 4 Toll-Like , Internalização do Vírus
5.
J Virol ; 95(21): e0135721, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406867

RESUMO

One of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virulence factors is the ability to interact with high affinity to the ACE2 receptor, which mediates viral entry into cells. The results of our study demonstrate that within a few passages in cell culture, both the natural isolate of SARS-CoV-2 and the recombinant cDNA-derived variant acquire an additional ability to bind to heparan sulfate (HS). This promotes a primary attachment of viral particles to cells before their further interactions with the ACE2. Interaction with HS is acquired through multiple mechanisms. These include (i) accumulation of point mutations in the N-terminal domain (NTD) of the S protein, which increases the positive charge of the surface of this domain, (ii) insertions into the NTD of heterologous peptides containing positively charged amino acids, and (iii) mutation of the first amino acid downstream of the furin cleavage site. This last mutation affects S protein processing, transforms the unprocessed furin cleavage site into the heparin-binding peptide, and makes viruses less capable of syncytium formation. These viral adaptations result in higher affinity of viral particles to heparin, dramatic increase in plaque sizes, more efficient viral spread, higher infectious titers, and 2 orders of magnitude higher infectivity. The detected adaptations also suggest an active role of NTD in virus attachment and entry. As in the case of other RNA-positive (RNA+) viruses, evolution to HS binding may result in virus attenuation in vivo. IMPORTANCE The spike protein of SARS-CoV-2 is a major determinant of viral pathogenesis. It mediates binding to the ACE2 receptor and, later, fusion of viral envelope and cellular membranes. The results of our study demonstrate that SARS-CoV-2 rapidly evolves during propagation in cultured cells. Its spike protein acquires mutations in the NTD and in the P1' position of the furin cleavage site (FCS). The amino acid substitutions or insertions of short peptides in NTD are closely located on the protein surface and increase its positive charge. They strongly increase affinity of the virus to heparan sulfate, make it dramatically more infectious for the cultured cells, and decrease the genome equivalent to PFU (GE/PFU) ratio by orders of magnitude. The S686G mutation also transforms the FCS into the heparin-binding peptide. Thus, the evolved SARS-CoV-2 variants efficiently use glycosaminoglycans on the cell surface for primary attachment before the high-affinity interaction of the spikes with the ACE2 receptor.


Assuntos
Evolução Molecular , Heparitina Sulfato/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Adaptação Biológica , Animais , Sítios de Ligação , Chlorocebus aethiops , Efeito Citopatogênico Viral , DNA Complementar , Furina/metabolismo , Heparina/metabolismo , Interações Hospedeiro-Patógeno , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Inoculações Seriadas , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Ensaio de Placa Viral , Ligação Viral
6.
J Virol ; 95(16): e0083621, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34076483

RESUMO

Chikungunya virus (CHIKV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Within the last 2 decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection. Replication of alphaviruses, including CHIKV, is determined not only by their nonstructural proteins but also by a wide range of host factors, which are indispensable components of viral replication complexes (vRCs). Alphavirus nsP3s contain hypervariable domains (HVDs), which encode multiple motifs that drive recruitment of cell- and virus-specific host proteins into vRCs. Our previous data suggested that NAP1 family members are a group of host factors that may interact with CHIKV nsP3 HVD. In this study, we performed a detailed investigation of the NAP1 function in CHIKV replication in vertebrate cells. Our data demonstrate that (i) the NAP1-HVD interactions have strong stimulatory effects on CHIKV replication, (ii) both NAP1L1 and NAP1L4 interact with the CHIKV HVD, (iii) NAP1 family members interact with two motifs, which are located upstream and downstream of the G3BP-binding motifs of CHIKV HVD, (iv) NAP1 proteins interact only with a phosphorylated form of CHIKV HVD, and HVD phosphorylation is mediated by CK2 kinase, and (v) NAP1 and other families of host factors redundantly promote CHIKV replication and their bindings have additive stimulatory effects on viral replication. IMPORTANCE Cellular proteins play critical roles in the assembly of alphavirus replication complexes (vRCs). Their recruitment is determined by the viral nonstructural protein 3 (nsP3). This protein contains a long, disordered hypervariable domain (HVD), which encodes virus-specific combinations of short linear motifs interacting with host factors during vRC assembly. Our study defined the binding mechanism of NAP1 family members to CHIKV HVD and demonstrated a stimulatory effect of this interaction on viral replication. We show that interaction with NAP1L1 is mediated by two HVD motifs and requires phosphorylation of HVD by CK2 kinase. Based on the accumulated data, we present a map of the binding motifs of the critical host factors currently known to interact with CHIKV HVD. It can be used to manipulate cell specificity of viral replication and pathogenesis, and to develop a new generation of vaccine candidates.


Assuntos
Vírus Chikungunya/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Sítios de Ligação , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Interações Hospedeiro-Patógeno , Camundongos , Mutação , Células NIH 3T3 , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
7.
Magn Reson Chem ; 60(2): 239-246, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34606645

RESUMO

The effect of the chemical structure of the equatorial ligand on the spin state of the Fe (III) ion in a series of 1-D chain complexes of the general formula [Fe(L)(tvp)]BPh4 ·nCH3 OH, where L = dianions of Schiff base containing a different number of aromatic groups: N,N'-ethylenebis (salicylaldimine) (salen) 1, N,N'-ethylenebis (acetylacetone)2,2'-imine (acen) 2, N,N'-ethylenebis (benzoylacetylacetone)2,2'-imine (bzacen) 3, and tvp = 1,2-di(4-pyridyl)ethylene, was studied by ultraviolet-visible (UV-vis) and electron paramagnetic resonance (EPR) methods. The values of exchange interactions, thermodynamic parameters of spin-crossover, and electronic structure features of the Fe (III) complexes were estimated from the EPR data. The substitution of a fragment of the equatorial ligand L in the series salen-acen-bzacen changes the local symmetry of the complex in the 1-D chain, thereby affecting the spin variable properties.


Assuntos
Iminas , Bases de Schiff , Espectroscopia de Ressonância de Spin Eletrônica , Iminas/química , Ligantes , Modelos Moleculares , Bases de Schiff/química
8.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581106

RESUMO

Eastern equine encephalitis virus (EEEV) is the most pathogenic member of the Alphavirus genus in the Togaviridae family. This virus continues to circulate in the New World and has a potential for deliberate use as a bioweapon. Despite the public health threat, to date no attenuated EEEV variants have been applied as live EEEV vaccines. Our previous studies demonstrated the critical function of the hypervariable domain (HVD) in EEEV nsP3 for the assembly of viral replication complexes (vRCs). EEEV HVD contains short linear motifs that recruit host proteins required for vRC formation and function. In this study, we developed a set of EEEV mutants that contained combinations of deletions in nsP3 HVD and clustered mutations in capsid protein, and tested the effects of these modifications on EEEV infection in vivo These mutations had cumulative negative effects on viral ability to induce meningoencephalitis. The deletions of two critical motifs, which interact with the members of cellular FXR and G3BP protein families, made EEEV cease to be neurovirulent. The additional clustered mutations in capsid protein, which affect its ability to induce transcriptional shutoff, diminished EEEV's ability to develop viremia. Most notably, despite the inability to induce detectable disease, the designed EEEV mutants remained highly immunogenic and, after a single dose, protected mice against subsequent infection with wild-type (wt) EEEV. Thus, alterations of interactions of EEEV HVD and likely HVDs of other alphaviruses with host factors represent an important direction for development of highly attenuated viruses that can be applied as live vaccines.IMPORTANCE Hypervariable domains (HVDs) of alphavirus nsP3 proteins recruit host proteins into viral replication complexes. The sets of HVD-binding host factors are specific for each alphavirus, and we have previously identified those specific for EEEV. The results of this study demonstrate that the deletions of the binding sites of the G3BP and FXR protein families in the nsP3 HVD of EEEV make the virus avirulent for mice. Mutations in the nuclear localization signal in EEEV capsid protein have an additional negative effect on viral replication in vivo Despite the inability to cause a detectable disease, the double HVD and triple HVD/capsid mutants induce high levels of neutralizing antibodies. Single immunization protects mice against infection with the highly pathogenic North American strain of EEEV. High safety, the inability to revert to wild-type phenotype, and high immunogenicity make the designed mutants attractive vaccine candidates for EEEV infection.


Assuntos
Vírus da Encefalite Equina do Leste/imunologia , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Fatores de Virulência/imunologia , Animais , Anticorpos Neutralizantes , Sítios de Ligação , Proteínas do Capsídeo/genética , Linhagem Celular , Vírus da Encefalite Equina do Leste/genética , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalomielite Equina/imunologia , Encefalomielite Equina/prevenção & controle , Camundongos , Mutação , Proteínas não Estruturais Virais/genética , Virulência/genética , Virulência/imunologia , Fatores de Virulência/genética , Replicação Viral
9.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694937

RESUMO

Venezuelan equine encephalitis virus (VEEV) is one of the important human and animal pathogens. It forms replication enzyme complexes (RCs) containing viral nonstructural proteins (nsPs) that mediate the synthesis of virus-specific RNAs. The assembly and associated functions of RC also depend on the presence of a specific set of host proteins. Our study demonstrates that the hypervariable domain (HVD) of VEEV nsP3 interacts with the members of the FXR family of cellular proteins and also binds the Src homology 3 (SH3) domain-containing proteins CD2AP and SH3KBP1. Interactions with FXR family members are mediated by the C-terminal repeating peptide of HVD. A single short, minimal motif identified in this study is sufficient for driving efficient VEEV replication in the absence of HVD interactions with other host proteins. The SH3 domain-containing proteins bind to another fragment of VEEV HVD. They can promote viral replication in the absence of FXR-HVD interactions albeit less efficiently. VEEV replication can be also switched from an FXR-dependent to a chikungunya virus-specific, G3BP-dependent mode. The described modifications of VEEV HVD have a strong impact on viral replication in vitro and pathogenesis. Their effects on viral pathogenesis depend on mouse age and the genetic background of the virus.IMPORTANCE The replication of alphaviruses is determined by specific sets of cellular proteins, which mediate the assembly of viral replication complexes. Some of these critical host factors interact with the hypervariable domain (HVD) of alphavirus nsP3. In this study, we have explored binding sites of host proteins, which are specific partners of nsP3 HVD of Venezuelan equine encephalitis virus. We also define the roles of these interactions in viral replication both in vitro and in vivo A mechanistic understanding of the binding of CD2AP, SH3KBP1, and FXR protein family members to VEEV HVD uncovers important aspects of alphavirus evolution and determines new targets for the development of alphavirus-specific drugs and directions for viral attenuation and vaccine development.


Assuntos
Vírus da Encefalite Equina Venezuelana/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação , Linhagem Celular , Vírus Chikungunya/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Encefalomielite Equina Venezuelana/virologia , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Domínios de Homologia de src
10.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33055253

RESUMO

Decades of insufficient control have resulted in unprecedented spread of chikungunya virus (CHIKV) around the globe, and millions have suffered from the highly debilitating disease. Nevertheless, the current understanding of CHIKV-host interactions and adaptability of the virus to replication in mosquitoes and mammalian hosts is still elusive. Our new study shows that four-and-a-half LIM domain protein (FHL1) is one of the host factors that interact with the hypervariable domain (HVD) of CHIKV nsP3. Unlike G3BPs, FHL1 is not a prerequisite of CHIKV replication, and many commonly used cell lines do not express FHL1. However, its expression has a detectable stimulatory effect(s) on CHIKV replication, and Fhl1 knockout (KO) cell lines demonstrate slower infection spread. Nuclear magnetic resonance (NMR)-based studies revealed that the binding site of FHL1 in CHIKV nsP3 HVD overlaps that of another proviral host factor, CD2AP. The structural data also demonstrated that FHL1-HVD interaction is mostly determined by the LIM1 domain of FHL1. However, it does not mirror binding of the entire protein, suggesting that other LIM domains are involved. In agreement with previously published data, our biological experiments showed that interactions of CHIKV HVD with CD2AP and FHL1 have additive effects on the efficiency of CHIKV replication. This study shows that CHIKV mutants with extensive modifications of FHL1- or both FHL1- and CD2AP-binding sites remain viable and develop spreading infection in multiple cell types. Our study also demonstrated that other members of the FHL family can bind to CHIKV HVD and thus may be involved in viral replication.IMPORTANCE Replication of chikungunya virus (CHIKV) is determined by a wide range of host factors. Previously, we have demonstrated that the hypervariable domain (HVD) of CHIKV nsP3 contains linear motifs that recruit defined families of host proteins into formation of functional viral replication complexes. Now, using NMR-based structural and biological approaches, we have characterized the binding site of the cellular FHL1 protein in CHIKV HVD and defined the biological significance of this interaction. In contrast to previously described binding of G3BP to CHIKV HVD, the FHL1-HVD interaction was found to not be a prerequisite of viral replication. However, the presence of FHL1 has a stimulatory effect on CHIKV infectivity and, subsequently, the infection spread. FHL1 and CD2AP proteins were found to have overlapping binding sites in CHIKV HVD and additive proviral functions. Elimination of the FHL1-binding site in the nsP3 HVD can be used for the development of stable, attenuated vaccine candidates.


Assuntos
Vírus Chikungunya/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/química , Proteínas com Domínio LIM/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítio Alostérico , Animais , Sítios de Ligação , Linhagem Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteínas com Homeodomínio LIM/química , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Musculares/genética , Mutação , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação Viral
11.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30487275

RESUMO

Alphavirus infections are characterized by global inhibition of cellular transcription and rapid induction of a cytopathic effect (CPE) in cells of vertebrate origin. Transcriptional shutoff impedes the cellular response to alphavirus replication and prevents establishment of an antiviral state. Chikungunya virus (CHIKV) is a highly pathogenic alphavirus representative, and its nonstructural protein 2 (nsP2) plays critical roles in both inhibition of transcription and CPE development. Previously, we have identified a small peptide in Sindbis virus (SINV) nsP2 (VLoop) that determined the protein's transcriptional inhibition function. It is located in the surface-exposed loop of the carboxy-terminal domain of nsP2 and exhibits high variability between members of different alphavirus serocomplexes. In this study, we found that SINV-specific mutations could not be directly applied to CHIKV. However, by using a new selection approach, we identified a variety of new VLoop variants that made CHIKV and its replicons incapable of inhibiting cellular transcription and dramatically less cytopathic. Importantly, the mutations had no negative effect on RNA and viral replication rates. In contrast to parental CHIKV, the developed VLoop mutants were unable to block induction of type I interferon. Consequently, they were cleared from interferon (IFN)-competent cells without CPE development. Alternatively, in murine cells that have defects in type I IFN production or signaling, the VLoop mutants established persistent, noncytopathic replication. The mutations in nsP2 VLoop may be used for development of new vaccine candidates against alphavirus infections and vectors for expression of heterologous proteins.IMPORTANCE Chikungunya virus is an important human pathogen which now circulates in both the Old and New Worlds. As in the case of other Old World alphaviruses, CHIKV nsP2 not only has enzymatic functions in viral RNA replication but also is a critical inhibitor of the antiviral response and one of the determinants of CHIKV pathogenesis. In this study, we have applied a new strategy to select a variety of CHIKV nsP2 mutants that no longer exhibited transcription-inhibitory functions. The designed CHIKV variants became potent type I interferon inducers and acquired a less cytopathic phenotype. Importantly, they demonstrated the same replication rates as the parental CHIKV. Mutations in the same identified peptide of nsP2 proteins derived from other Old World alphaviruses also abolished their nuclear functions. Such mutations can be further exploited for development of new attenuated alphaviruses.


Assuntos
Vírus Chikungunya/metabolismo , Proteínas não Estruturais Virais/genética , Animais , Antivirais , Linhagem Celular , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Vírus Chikungunya/genética , Vírus Chikungunya/fisiologia , Efeito Citopatogênico Viral/genética , Vírus de DNA/genética , Humanos , Interferon Tipo I/genética , Camundongos , Mutação , Células NIH 3T3 , RNA Viral/metabolismo , Replicon , Transdução de Sinais , Sindbis virus/genética , Sindbis virus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
12.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321815

RESUMO

In recent years, intrinsically disordered proteins (IDPs) and disordered domains have attracted great attention. Many of them contain linear motifs that mediate interactions with other factors during formation of multicomponent protein complexes. NMR spectrometry is a valuable tool for characterizing this type of interactions on both amino acid (aa) and atomic levels. Alphaviruses encode a nonstructural protein nsP3, which drives viral replication complex assembly. nsP3 proteins contain over 200-aa-long hypervariable domains (HVDs), which exhibits no homology between different alphavirus species, are predicted to be intrinsically disordered and appear to be critical for alphavirus adaptation to different cells. Previously, we have shown that nsP3 HVD of chikungunya virus (CHIKV) is completely disordered with low tendency to form secondary structures in free form. In this new study, we used novel NMR approaches to assign the spectra for the nsP3 HVD of Venezuelan equine encephalitis virus (VEEV). The HVDs of CHIKV and VEEV have no homology but are both involved in replication complex assembly and function. We have found that VEEV nsP3 HVD is also mostly disordered but contains a short stable α-helix in its C-terminal fragment, which mediates interaction with the members of cellular Fragile X syndrome protein family. Our NMR data also suggest that VEEV HVD has several regions with tendency to form secondary structures.


Assuntos
Vírus da Encefalite Equina Venezuelana/enzimologia , Espectroscopia de Ressonância Magnética , Domínios e Motivos de Interação entre Proteínas , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Animais , Fracionamento Químico , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica , Solubilidade , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/isolamento & purificação
13.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232189

RESUMO

Sindbis virus (SINV) is a representative member of the Alphavirus genus in the Togaviridae family. The hallmark of SINV replication in vertebrate cells is a rapid development of the cytopathic effect (CPE), which usually occurs within 24 h postinfection. Mechanistic understanding of CPE might lead to development of new prophylactic vaccines and therapeutic means against alphavirus infections. However, development of noncytopathic SINV variants and those of other Old World alphaviruses was always highly inefficient and usually resulted in selection of mutants demonstrating poor replication of the viral genome and transcription of subgenomic RNA. This likely caused a nonspecific negative effect on the rates of CPE development. The results of this study demonstrate that CPE induced by SINV and likely by other Old World alphaviruses is a multicomponent process, in which transcriptional and translational shutoffs are the key contributors. Inhibition of cellular transcription and translation is determined by SINV nsP2 and nsP3 proteins, respectively. Defined mutations in the nsP2-specific peptide between amino acids (aa) 674 and 688 prevent virus-induced degradation of the catalytic subunit of cellular-DNA-dependent RNA polymerase II and transcription inhibition and make SINV a strong type I interferon (IFN) inducer without affecting its replication rates. Mutations in the nsP3 macrodomain, which were demonstrated to inhibit its mono-ADP-ribosylhydrolase activity, downregulate the second component of CPE development, inhibition of cellular translation, and also have no effect on virus replication rates. Only the combination of nsP2- and nsP3-specific mutations in the SINV genome has a dramatic negative effect on the ability of virus to induce CPE.IMPORTANCE Alphaviruses are a group of important human and animal pathogens with worldwide distribution. Their characteristic feature is a highly cytopathic phenotype in cells of vertebrate origin. The molecular mechanism of CPE remains poorly understood. In this study, by using Sindbis virus (SINV) as a model of the Old World alphaviruses, we demonstrated that SINV-specific CPE is redundantly determined by viral nsP2 and nsP3 proteins. NsP2 induces the global transcriptional shutoff, and this nuclear function can be abolished by the mutations of the small, surface-exposed peptide in the nsP2 protease domain. NsP3, in turn, determines the development of translational shutoff, and this activity depends on nsP3 macrodomain-associated mono-ADP-ribosylhydrolase activity. A combination of defined mutations in nsP2 and nsP3, which abolish SINV-induced transcription and translation inhibition, in the same viral genome does not affect SINV replication rates but makes it noncytopathic and a potent inducer of type I interferon.


Assuntos
Infecções por Alphavirus/patologia , Cisteína Endopeptidases/metabolismo , Efeito Citopatogênico Viral , Biossíntese de Proteínas , Sindbis virus/fisiologia , Transcrição Gênica , Proteínas não Estruturais Virais/metabolismo , Infecções por Alphavirus/genética , Infecções por Alphavirus/metabolismo , Infecções por Alphavirus/virologia , Animais , Cisteína Endopeptidases/genética , Genoma Viral , Camundongos , Células NIH 3T3 , Proteínas não Estruturais Virais/genética , Vírion , Replicação Viral
14.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899097

RESUMO

Alphaviruses are widely distributed in both hemispheres and circulate between mosquitoes and amplifying vertebrate hosts. Geographically separated alphaviruses have adapted to replication in particular organisms. The accumulating data suggest that this adaptation is determined not only by changes in their glycoproteins but also by the amino acid sequence of the hypervariable domain (HVD) of the alphavirus nsP3 protein. We performed a detailed investigation of chikungunya virus (CHIKV) nsP3 HVD interactions with host factors and their roles in viral replication in vertebrate and mosquito cells. The results demonstrate that CHIKV HVD is intrinsically disordered and binds several distinctive cellular proteins. These host factors include two members of the G3BP family and their mosquito homolog Rin, two members of the NAP1 family, and several SH3 domain-containing proteins. Interaction with G3BP proteins or Rin is an absolute requirement for CHIKV replication, although it is insufficient to solely drive it in either vertebrate or mosquito cells. To achieve a detectable level of virus replication, HVD needs to bind members of at least one more protein family in addition to G3BPs. Interaction with NAP1L1 and NAP1L4 plays a more proviral role in vertebrate cells, while binding of SH3 domain-containing proteins to a proline-rich fragment of HVD is more critical for virus replication in the cells of mosquito origin. Modifications of binding sites in CHIKV HVD allow manipulation of the cell specificity of CHIKV replication. Similar changes may be introduced into HVDs of other alphaviruses to alter their replication in particular cells or tissues.IMPORTANCE Alphaviruses utilize a broad spectrum of cellular factors for efficient formation and function of replication complexes (RCs). Our data demonstrate for the first time that the hypervariable domain (HVD) of chikungunya virus nonstructural protein 3 (nsP3) is intrinsically disordered. It binds at least 3 families of cellular proteins, which play an indispensable role in viral RNA replication. The proteins of each family demonstrate functional redundancy. We provide a detailed map of the binding sites on CHIKV nsP3 HVD and show that mutations in these sites or the replacement of CHIKV HVD by heterologous HVD change cell specificity of viral replication. Such manipulations with alphavirus HVDs open an opportunity for development of new irreversibly attenuated vaccine candidates. To date, the disordered protein fragments have been identified in the nonstructural proteins of many other viruses. They may also interact with a variety of cellular factors that determine critical aspects of virus-host interactions.


Assuntos
Vírus Chikungunya/fisiologia , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Vírus Chikungunya/química , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Culicidae , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Domínios Proteicos , Células Vero , Proteínas não Estruturais Virais/genética , Replicação Viral
15.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167335

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a representative member of the New World alphaviruses. It is transmitted by mosquito vectors and causes highly debilitating disease in humans, equids, and other vertebrate hosts. Despite a continuous public health threat, very few compounds with anti-VEEV activity in cell culture and in mouse models have been identified to date, and rapid development of virus resistance to some of them has been recorded. In this study, we investigated the possibility of using a modified nucleoside analog, ß-d-N4-hydroxycytidine (NHC), as an anti-VEEV agent and defined the mechanism of its anti-VEEV activity. The results demonstrate that NHC is a very potent antiviral agent. It affects both the release of genome RNA-containing VEE virions and their infectivity. Both of these antiviral activities are determined by the NHC-induced accumulation of mutations in virus-specific RNAs. The antiviral effect is most prominent when NHC is applied early in the infectious process, during the amplification of negative- and positive-strand RNAs in infected cells. Most importantly, only a low-level resistance of VEEV to NHC can be developed, and it requires acquisition and cooperative function of more than one mutation in nsP4. These adaptive mutations are closely located in the same segment of nsP4. Our data suggest that NHC is more potent than ribavirin as an anti-VEEV agent and likely can be used to treat other alphavirus infections.IMPORTANCE Venezuelan equine encephalitis virus (VEEV) can cause widespread epidemics among humans and domestic animals. VEEV infections result in severe meningoencephalitis and long-term sequelae. No approved therapeutics exist for treatment of VEEV infections. Our study demonstrates that ß-d-N4-hydroxycytidine (NHC) is a very potent anti-VEEV compound, with the 50% effective concentration being below 1 µM. The mechanism of NHC antiviral activity is based on induction of high mutation rates in the viral genome. Accordingly, NHC treatment affects both the rates of particle release and the particle infectivity. Most importantly, in contrast to most of the anti-alphavirus drugs that are under development, resistance of VEEV to NHC develops very inefficiently. Even low levels of resistance require acquisition of multiple mutations in the gene of the VEEV-specific RNA-dependent RNA polymerase nsP4.


Assuntos
Alphavirus/patogenicidade , Antivirais/farmacologia , Citidina/análogos & derivados , Mutação , Alphavirus/efeitos dos fármacos , Alphavirus/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Citidina/farmacologia , Genoma Viral/efeitos dos fármacos , Humanos , Ribavirina/farmacologia , Células Vero , Carga Viral , Proteínas não Estruturais Virais/genética
16.
Nephrol Dial Transplant ; 34(10): 1739-1745, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668833

RESUMO

BACKGROUND: There is no ideal lock solution that prevents hemodialysis (HD) catheter loss due to catheter-related thrombosis (CRT) and catheter-related bloodstream infection (CRBSI). Catheter loss is associated with increased hospitalization and high inpatient costs. Sodium bicarbonate (NaHCO3) demonstrates anti-infective and anticoagulation properties with a good safety profile, making it an ideal lock solution development target.The objective of this study was to determine the safety and efficacy of using sodium bicarbonate catheter lock solution (SBCLS) as a means of preventing HD catheter loss due to CRT and CRBSI. METHODS: The study took place in a community hospital in Brooklyn, NY, USA. All admitted patients ≥18 years of age who needed HD treatment through CVC were included in the study. 451 patients included in the study were provided SBCLS or NSCLS post-dialysis. Catheter loss due to CRT or CRBSI was evaluated over a period of 546 days. RESULTS: A total of 452 patients met the criteria; 1 outlier was excluded, 226 were in the NSCLS group and 225 were in the SBCLS group. There were no significant differences between groups in comorbidities at the outset. The NSCLS group had CRT and CRBSI rates of 4.1 and 2.6/1000 catheter days (CD), respectively, compared with 0.17/1000 CD for both outcomes in the SBCLS group. SBCLS patients had a significantly reduced catheter loss rate due to CRT (P < 0.0001) and CRBSI (P = 0.0004). NSCLS patients had higher odds of losing their catheter due to CRT {odds ratio [OR] 26.6 [95% confidence interval (CI) 3.57-198.52]} and CRBSI [OR 15.9 (95% CI 2.09-121.61)] during the study period. CONCLUSION: The novel approach of using SBCLS was found to be safe and was statistically superior to normal saline in preventing HD catheter loss due to CRT and CRBSI. NaHCO3 solution is inexpensive, readily available in various settings and holds the potential to decrease hospitalization, length of stay and dialysis-related costs. TRIAL REGISTRATION: Maimonides Medical Center Investigational Review Board, Study IRB 2015-06-25-CIH. ClinicalTrials.gov identifier: NCT03627884.


Assuntos
Infecções Relacionadas a Cateter/tratamento farmacológico , Cateteres de Demora/efeitos adversos , Diálise Renal/normas , Bicarbonato de Sódio/administração & dosagem , Trombose/tratamento farmacológico , Adolescente , Adulto , Idoso , Anti-Infecciosos/administração & dosagem , Infecções Relacionadas a Cateter/etiologia , Cateteres de Demora/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Trombose/etiologia , Adulto Jovem
17.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468889

RESUMO

Eastern equine encephalitis virus (EEEV) is a representative member of the New World alphaviruses. It is pathogenic for a variety of vertebrate hosts, in which EEEV induces a highly debilitating disease, and the outcomes are frequently lethal. Despite a significant public health threat, the molecular mechanism of EEEV replication and interaction with hosts is poorly understood. Our previously published data and those of other teams have demonstrated that hypervariable domains (HVDs) of the alphavirus nsP3 protein interact with virus-specific host factors and play critical roles in assembly of viral replication complexes (vRCs). The most abundantly represented HVD-binding proteins are the FXR and G3BP family members. FXR proteins drive the assembly of vRCs of Venezuelan equine encephalitis virus (VEEV), and G3BPs were shown to function in vRC assembly in the replication of chikungunya and Sindbis viruses. Our new study demonstrates that EEEV exhibits a unique level of redundancy in the use of host factors in RNA replication. EEEV efficiently utilizes both the VEEV-specific FXR protein family and the Old World alphavirus-specific G3BP protein family. A lack of interaction with either FXRs or G3BPs does not affect vRC formation; however, removal of EEEV's ability to interact with both protein families has a deleterious effect on virus growth. Other identified EEEV nsP3 HVD-interacting host proteins are also capable of supporting EEEV replication, albeit with a dramatically lower efficiency. The ability to use a wide range of host factors with redundant functions in vRC assembly and function provides a plausible explanation for the efficient replication of EEEV and may contribute to its highly pathogenic phenotype.IMPORTANCE Eastern equine encephalitis virus (EEEV) is one of the most pathogenic New World alphaviruses. Despite the continuous public health threat, to date, the molecular mechanisms of its very efficient replication and high virulence are not sufficiently understood. The results of this new study demonstrate that North American EEEV exhibits a high level of redundancy in using host factors in replication complex assembly and virus replication. The hypervariable domain of the EEEV nsP3 protein interacts with all of the members of the FXR and G3BP protein families, and only a lack of interaction with both protein families strongly affects virus replication rates. Other identified HVD-binding factors are also involved in EEEV replication, but their roles are not as critical as those of FXRs and G3BPs. The new data present a plausible explanation for the exceptionally high replication rates of EEEV and suggest a new means of its attenuation and new targets for screening of antiviral drugs.


Assuntos
Vírus da Encefalite Equina do Leste/fisiologia , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular
18.
PLoS Pathog ; 12(8): e1005810, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509095

RESUMO

The positive-strand RNA viruses initiate their amplification in the cell from a single genome delivered by virion. This single RNA molecule needs to become involved in replication process before it is recognized and degraded by cellular machinery. In this study, we show that distantly related New World and Old World alphaviruses have independently evolved to utilize different cellular stress granule-related proteins for assembly of complexes, which recruit viral genomic RNA and facilitate formation of viral replication complexes (vRCs). Venezuelan equine encephalitis virus (VEEV) utilizes all members of the Fragile X syndrome (FXR) family, while chikungunya and Sindbis viruses exploit both members of the G3BP family. Despite being in different families, these proteins share common characteristics, which determine their role in alphavirus replication, namely, the abilities for RNA-binding and for self-assembly into large structures. Both FXR and G3BP proteins interact with virus-specific, repeating amino acid sequences located in the C-termini of hypervariable, intrinsically disordered domains (HVDs) of viral nonstructural protein nsP3. We demonstrate that these host factors orchestrate assembly of vRCs and play key roles in RNA and virus replication. Only knockout of all of the homologs results in either pronounced or complete inhibition of replication of different alphaviruses. The use of multiple homologous proteins with redundant functions mediates highly efficient recruitment of viral RNA into the replication process. This independently evolved acquisition of different families of cellular proteins by the disordered protein fragment to support alphavirus replication suggests that other RNA viruses may utilize a similar mechanism of host factor recruitment for vRC assembly. The use of different host factors by alphavirus species may be one of the important determinants of their pathogenesis.


Assuntos
Vírus Chikungunya/fisiologia , Vírus da Encefalite Equina Venezuelana/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Sindbis virus/fisiologia , Replicação Viral/fisiologia , Animais , Proteínas de Transporte/metabolismo , DNA Helicases , Técnicas de Inativação de Genes , Hibridização In Situ , Camundongos , Microscopia Confocal , Células NIH 3T3 , Proteínas de Ligação a Poli-ADP-Ribose , Reação em Cadeia da Polimerase , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas não Estruturais Virais/metabolismo
19.
J Virol ; 90(4): 2008-20, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656680

RESUMO

UNLABELLED: Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, for which no safe and efficient vaccines or therapeutic means have been developed. Viral particle assembly and budding processes represent potential targets for therapeutic intervention. However, our understanding of the mechanistic process of VEEV assembly, RNA encapsidation, and the roles of different capsid-specific domains in these events remain to be described. The results of this new study demonstrate that the very amino-terminal VEEV capsid-specific subdomain SD1 is a critical player in the particle assembly process. It functions in a virus-specific mode, and its deletion, mutation, or replacement by the same subdomain derived from other alphaviruses has strong negative effects on infectious virus release. VEEV variants with mutated SD1 accumulate adaptive mutations in both SD1 and SD2, which result in a more efficiently replicating phenotype. Moreover, efficient nucleocapsid and particle assembly proceeds only when the two subdomains, SD1 and SD2, are derived from the same alphavirus. These two subdomains together appear to form the central core of VEEV nucleocapsids, and their interaction is one of the driving forces of virion assembly and budding. The similar domain structures of alphavirus capsid proteins suggest that this new knowledge can be applied to other alphaviruses. IMPORTANCE: Alphaviruses are a group of human and animal pathogens which cause periodic outbreaks of highly debilitating diseases. Despite significant progress made in understanding the overall structure of alphavirus and VEEV virions, and glycoprotein spikes in particular, the mechanistic process of nucleocapsid assembly, RNA encapsidation, and the roles of different capsid-specific domains in these processes remain to be described. Our new data demonstrate that the very amino-terminal subdomain of Venezuelan equine encephalitis virus capsid protein, SD1, plays a critical role in the nucleocapsid assembly. It functions synergistically with the following SD2 (helix I) and appears to form a core in the center of nucleocapsid. The core formation is one of the driving forces of alphavirus particle assembly.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Encefalite Equina Venezuelana/fisiologia , Nucleocapsídeo/metabolismo , Vírion/metabolismo , Montagem de Vírus , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Cricetinae , Análise Mutacional de DNA , Vírus da Encefalite Equina Venezuelana/genética , Vírus da Encefalite Equina Venezuelana/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ensaio de Placa Viral , Vírion/ultraestrutura
20.
PLoS Pathog ; 11(4): e1004863, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25927359

RESUMO

Alphaviruses are a group of widely distributed human and animal pathogens. It is well established that their replication is sensitive to type I IFN treatment, but the mechanism of IFN inhibitory function remains poorly understood. Using a new experimental system, we demonstrate that in the presence of IFN-ß, activation of interferon-stimulated genes (ISGs) does not interfere with either attachment of alphavirus virions to the cells, or their entry and nucleocapsid disassembly. However, it strongly affects translation of the virion-delivered virus-specific RNAs. One of the ISG products, IFIT1 protein, plays a major role in this translation block, although an IFIT1-independent mechanism is also involved. The 5'UTRs of the alphavirus genomes were found to differ significantly in their ability to drive translation in the presence of increased concentration of IFIT1. Prior studies have shown that adaptation of naturally circulating alphaviruses to replication in tissue culture results in accumulation of mutations in the 5'UTR, which increase the efficiency of the promoter located in the 5'end of the genome. Here, we show that these mutations also decrease resistance of viral RNA to IFIT1-induced translation inhibition. In the presence of higher levels of IFIT1, alphaviruses with wt 5'UTRs became potent inducers of type I IFN, suggesting a new mechanism of type I IFN induction. We applied this knowledge of IFIT1 interaction with alphaviruses to develop new attenuated variants of Venezuelan equine encephalitis and chikungunya viruses that are more sensitive to the antiviral effects of IFIT1, and thus could serve as novel vaccine candidates.


Assuntos
Alphavirus/fisiologia , Proteínas de Transporte/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Interações Hospedeiro-Patógeno , Interferon Tipo I/agonistas , Replicação Viral , Regiões 5' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal , Aedes , Alphavirus/genética , Alphavirus/imunologia , Animais , Linhagem Celular , Células Cultivadas , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , Vírus Chikungunya/fisiologia , Regulação para Baixo , Vírus da Encefalite Equina Venezuelana/genética , Vírus da Encefalite Equina Venezuelana/imunologia , Vírus da Encefalite Equina Venezuelana/fisiologia , Vacinas Fúngicas/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/imunologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/virologia , Mutação , Células NIH 3T3 , RNA/metabolismo , Proteínas de Ligação a RNA , Tropismo Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA