RESUMO
Pathogenic variants in the genes encoding for the ASC1 complex were recently reported in patients with congenital fractures, joint contractures, neonatal hypotonia and respiratory distress. Here we report two male children with biallelic TRIP4 pathogenic loss of function variants. The first child presented with foetal bradykinesia, neonatal respiratory distress, central and peripheral hypotonia, constipation, hyperlaxity, left uretero-hydronephrosis and post-obstructive kidney dysplasia. The second had severe central and peripheral neonatal hypotonia, feeding difficulties, kyphosis, developmental delay and hyperlaxity. Detailed review of all reported cases with ASCC1 (12 patients) and TRIP4 (18 patients) variants highlights striking genotype-phenotype correlations. This is the fourth report of patients with TRIP4 variants and the first description of post-obstructive kidney dysplasia in this condition.
Assuntos
Doenças Musculares , Proteínas de Transporte/genética , Criança , Estudos de Associação Genética , Humanos , Masculino , Hipotonia Muscular/genética , Doenças Musculares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
This paper presents an overview of the organisation and the results of the collaborative exercises (CE) of the European DNA Profiling (EDNAP) Group's mitochondrial DNA population database project (EMPOP). The aim of the collaborative exercises was to determine whether uniformity of mtDNA sequencing results could be achieved among different laboratories. These were asked to sequence either the complete mtDNA control region or the two hypervariable regions HVI (16024-16365) and HVII (73-340) from DNA extracts, buccal swabs or bloodstains, proceeding in accordance with the protocol and strategies used in each individual laboratory. The results of the collaborative exercises were employed to identify possible sources of errors that could arise during the analysis and interpretation of mtDNA profiles. These findings were taken as a basis to tentatively make suitable arrangements for the construction of a high quality mtDNA database. One hundred fifty mtDNA profiles were submitted to the evaluating laboratory, and disaccording profiles were classified into four groups corresponding to the source of error: clerical errors, sample mix-ups, contaminations and discrepancies with respect to the mtDNA nomenclature. Overall, 14 disaccording haplotypes (16 individual errors) were observed. The errors included 10 clerical errors, 3 interpretation problems, 2 cases of sample mix-up and 1 case of point heteroplasmic mixture, where the 2 sequencing reactions brought inconsistent base calls. This corresponds to an error rate of 10.7% in a virtual mtDNA database consisting of the collaborative exercise results. However, this estimate is still conservative compared to conclusions drawn by authors of meanwhile numerous publications critically reviewing published mtDNA population databases. Our results and earlier published concerns strongly emphasize the need for appropriate safety regulations when mtDNA profiles are compiled for database purposes in order to accomplish the high standard required for mtDNA databases that are used in the forensic context.