Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(1): 125-138, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27015310

RESUMO

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação do Apetite , Glucose/metabolismo , Resistência à Insulina , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Comportamento Alimentar , Camundongos , Miostatina/genética , Optogenética , Transcriptoma
2.
Hum Mol Genet ; 32(7): 1083-1089, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36300302

RESUMO

Auditory synaptopathy/neuropathy (AS/AN) is a distinct type of sensorineural hearing loss in which the cochlear sensitivity to sound (i.e. active cochlear amplification by outer hair cells) is preserved whereas sound encoding by inner hair cells and/or auditory nerve fibers is disrupted owing to genetic or environmental factors. Autosomal-dominant auditory neuropathy type 2 (AUNA2) was linked either to chromosomal bands 12q24 or 13q34 in a large German family in 2017. By whole-genome sequencing, we now detected a 5500 bp deletion in ATP11A on chromosome 13q34 segregating with the phenotype in this family. ATP11A encodes a P-type ATPase that translocates phospholipids from the exoplasmic to the cytoplasmic leaflet of the plasma membrane. The deletion affects both isoforms of ATP11A and activates a cryptic splice site leading to the formation of an alternative last exon. ATP11A carrying the altered C-terminus loses its flippase activity for phosphatidylserine. Atp11a is expressed in fibers and synaptic contacts of the auditory nerve and in the cochlear nucleus in mice, and conditional Atp11a knockout mice show a progressive reduction of the spiral ganglion neuron compound action potential, recapitulating the human phenotype of AN. By combining whole-genome sequencing, immunohistochemistry, in vitro functional assays and generation of a mouse model, we could thus identify a partial deletion of ATP11A as the genetic cause of AUNA2.


Assuntos
Perda Auditiva Central , Perda Auditiva Neurossensorial , Humanos , Camundongos , Animais , Perda Auditiva Central/genética , Perda Auditiva Neurossensorial/genética , Mutação , Células Ciliadas Auditivas Internas , Cromossomos , Transportadores de Cassetes de Ligação de ATP/genética
3.
PLoS Pathog ; 17(9): e1009943, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34555129

RESUMO

Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v-ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense.


Assuntos
Glicólise/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/metabolismo , Fagossomos/metabolismo , Salmonelose Animal/metabolismo , Animais , Perfilação da Expressão Gênica , Metabolômica , Camundongos , Salmonella typhimurium/metabolismo
4.
Mol Cell ; 48(4): 641-6, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23063529

RESUMO

Together with GTP and initiator methionyl-tRNA, translation initiation factor eIF2 forms a ternary complex that binds the 40S ribosome and then scans an mRNA to select the AUG start codon for protein synthesis. Here, we show that a human X-chromosomal neurological disorder characterized by intellectual disability and microcephaly is caused by a missense mutation in eIF2γ (encoded by EIF2S3), the core subunit of the heterotrimeric eIF2 complex. Biochemical studies of human cells overexpressing the eIF2γ mutant and of yeast eIF2γ with the analogous mutation revealed a defect in binding the eIF2ß subunit to eIF2γ. Consistent with this loss of eIF2 integrity, the yeast eIF2γ mutation impaired translation start codon selection and eIF2 function in vivo in a manner that was suppressed by overexpressing eIF2ß. These findings directly link intellectual disability to impaired translation initiation, and provide a mechanistic basis for the human disease due to partial loss of eIF2 function.


Assuntos
Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Deficiência Intelectual/genética , Iniciação Traducional da Cadeia Peptídica/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Fator de Iniciação 2 em Eucariotos/química , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/química
5.
BMC Genomics ; 20(1): 85, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678634

RESUMO

BACKGROUND: Next-Generation Sequencing (NGS) has been widely accepted as an essential tool in molecular biology. Reduced costs and automated analysis pipelines make the use of NGS data feasible even for small labs, yet the methods for interpreting the data are not sophisticated enough to account for the amount of information. RESULTS: We propose s ·nr, a Visual Analytics tool that provides simple yet powerful visual interfaces for displaying and querying NGS data. It allows researchers to explore their own data in the context of experimental data deposited in public repositories, as well as to extract specific data sets with similar gene expression signatures. We tested s ·nr on 1543 RNA-Seq based mouse differential expression profiles derived from the public ArrayExpress platform. We provide the repository of processed data with this paper. CONCLUSION: s ·nr, easily deployable utilizing its containerized implementation, empowers researchers to analyze and relate their own RNA-Seq as well as to provide interactive and contextual crosstalk with data from public repositories. This allows users to deduce novel and unbiased hypotheses about the underlying molecular processes. DEMO: Login demo/demo: snr.sf.mpg.de (Tested with Google Chrome).


Assuntos
Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Software , Animais , Gráficos por Computador , Camundongos , Interface Usuário-Computador
6.
BMC Bioinformatics ; 19(1): 156, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29699486

RESUMO

BACKGROUND: Recent cancer genome studies on many human cancer types have relied on multiple molecular high-throughput technologies. Given the vast amount of data that has been generated, there are surprisingly few databases which facilitate access to these data and make them available for flexible analysis queries in the broad research community. If used in their entirety and provided at a high structural level, these data can be directed into constantly increasing databases which bear an enormous potential to serve as a basis for machine learning technologies with the goal to support research and healthcare with predictions of clinically relevant traits. RESULTS: We have developed the Cancer Systems Biology Database (CancerSysDB), a resource for highly flexible queries and analysis of cancer-related data across multiple data types and multiple studies. The CancerSysDB can be adopted by any center for the organization of their locally acquired data and its integration with publicly available data from multiple studies. A publicly available main instance of the CancerSysDB can be used to obtain highly flexible queries across multiple data types as shown by highly relevant use cases. In addition, we demonstrate how the CancerSysDB can be used for predictive cancer classification based on whole-exome data from 9091 patients in The Cancer Genome Atlas (TCGA) research network. CONCLUSIONS: Our database bears the potential to be used for large-scale integrative queries and predictive analytics of clinically relevant traits.


Assuntos
Bases de Dados Factuais , Genômica/métodos , Aprendizado de Máquina , Neoplasias/genética , Software , Biologia de Sistemas , Exoma , Humanos
7.
Hum Mutat ; 38(10): 1325-1335, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28598576

RESUMO

Next-generation sequencing (NGS) has turned from a new and experimental technology into a standard procedure for cancer genome studies and clinical investigation. While a multitude of software packages for cancer genome data analysis have been made available, these need to be combined into efficient analytical workflows that cover multiple aspects relevant to a clinical environment and that deliver handy results within a reasonable time frame. Here, we introduce QuickNGS Cancer as a new suite of bioinformatics pipelines that is focused on cancer genomics and significantly reduces the analytical hurdles that still limit a broader applicability of NGS technology, particularly to clinically driven research. QuickNGS Cancer allows a highly efficient analysis of a broad variety of NGS data types, specifically considering cancer-specific issues, such as biases introduced by tumor impurity and aneuploidy or the assessment of genomic variations regarding their biomedical relevance. It delivers highly reproducible analysis results ready for interpretation within only a few days after sequencing, as shown by a reanalysis of 140 tumor/normal pairs from The Cancer Genome Atlas (TCGA) in which QuickNGS Cancer detected a significant number of mutations in key cancer genes missed by a well-established mutation calling pipeline. Finally, QuickNGS Cancer obtained several unexpected mutations in leukemias that could be confirmed by Sanger sequencing.


Assuntos
Genoma Humano/genética , Mutação/genética , Neoplasias/genética , Software , Biologia Computacional , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Fluxo de Trabalho
8.
BMC Genomics ; 17(1): 855, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809788

RESUMO

BACKGROUND: Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. RESULTS: Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. CONCLUSIONS: The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.


Assuntos
Brassica/genética , Inflorescência/genética , Meristema/genética , Transcriptoma , Análise por Conglomerados , Biologia Computacional/métodos , Epigênese Genética , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Genes Reporter , Fenótipo , Células Vegetais/metabolismo , Processamento Pós-Transcricional do RNA
9.
BMC Genomics ; 16: 487, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26126663

RESUMO

BACKGROUND: Next-Generation Sequencing (NGS) has emerged as a widely used tool in molecular biology. While time and cost for the sequencing itself are decreasing, the analysis of the massive amounts of data remains challenging. Since multiple algorithmic approaches for the basic data analysis have been developed, there is now an increasing need to efficiently use these tools to obtain results in reasonable time. RESULTS: We have developed QuickNGS, a new workflow system for laboratories with the need to analyze data from multiple NGS projects at a time. QuickNGS takes advantage of parallel computing resources, a comprehensive back-end database, and a careful selection of previously published algorithmic approaches to build fully automated data analysis workflows. We demonstrate the efficiency of our new software by a comprehensive analysis of 10 RNA-Seq samples which we can finish in only a few minutes of hands-on time. The approach we have taken is suitable to process even much larger numbers of samples and multiple projects at a time. CONCLUSION: Our approach considerably reduces the barriers that still limit the usability of the powerful NGS technology and finally decreases the time to be spent before proceeding to further downstream analysis and interpretation of the data.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Animais , Automação Laboratorial , Bases de Dados Genéticas , Humanos , Software , Fatores de Tempo , Fluxo de Trabalho
10.
Hum Mol Genet ; 22(25): 5199-214, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918663

RESUMO

Autosomal recessive primary microcephaly (MCPH) is characterized by reduced head circumference, reduction in the size of the cerebral cortex with otherwise grossly normal brain structure and variable intellectual disability. MCPH is caused by mutations of 11 different genes which code for proteins implicated in cell division and cell cycle regulation. We studied a consanguineous eight-generation family from Pakistan with ten microcephalic children using homozygosity mapping and found a new MCPH locus at HSA 7q21.11-q21.3. Sanger sequencing of the most relevant candidate genes in this region revealed a homozygous single nucleotide substitution c.589G>A in CDK6, which encodes cyclin-dependent kinase 6. The mutation changes a highly conserved alanine at position 197 into threonine (p.Ala197Thr). Post hoc whole-exome sequencing corroborated this mutation's identification as the causal variant. CDK6 is an important protein for the control of the cell cycle and differentiation of various cell types. We show here for the first time that CDK6 associates with the centrosome during mitosis; however, this was not observed in patient fibroblasts. Moreover, the mutant primary fibroblasts exhibited supernumerary centrosomes, disorganized microtubules and mitotic spindles, an increased centrosome nucleus distance, reduced cell proliferation and impaired cell motility and polarity. Upon ectopic expression of the mutant protein and knockdown of CDK6 through shRNA, we noted similar effects. We propose that the identified CDK6 mutation leads to reduced cell proliferation and impairs the correct functioning of the centrosome in microtubule organization and its positioning near the nucleus which are key determinants during neurogenesis.


Assuntos
Centrossomo/metabolismo , Quinase 6 Dependente de Ciclina/genética , Deficiência Intelectual/genética , Microcefalia/genética , Mitose/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 7/genética , Quinase 6 Dependente de Ciclina/química , Quinase 6 Dependente de Ciclina/metabolismo , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/fisiopatologia , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Linhagem , Polimorfismo de Nucleotídeo Único , Conformação Proteica
11.
Am J Hum Genet ; 90(5): 871-8, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22521416

RESUMO

Autosomal-recessive primary microcephaly (MCPH) is a rare congenital disorder characterized by intellectual disability, reduced brain and head size, but usually without defects in cerebral cortical architecture, and other syndromic abnormalities. MCPH is heterogeneous. The underlying genes of the seven known loci code for centrosomal proteins. We studied a family from northern Pakistan with two microcephalic children using homozygosity mapping and found suggestive linkage for regions on chromosomes 2, 4, and 9. We sequenced two positional candidate genes and identified a homozygous frameshift mutation in the gene encoding the 135 kDa centrosomal protein (CEP135), located in the linkage interval on chromosome 4, in both affected children. Post hoc whole-exome sequencing corroborated this mutation's identification as the causal variant. Fibroblasts obtained from one of the patients showed multiple and fragmented centrosomes, disorganized microtubules, and reduced growth rate. Similar effects were reported after knockdown of CEP135 through RNA interference; we could provoke them also by ectopic overexpression of the mutant protein. Our findings suggest an additional locus for MCPH at HSA 4q12 (MCPH8), further strengthen the role of centrosomes in the development of MCPH, and place CEP135 among the essential components of this important organelle in particular for a normal neurogenesis.


Assuntos
Proteínas de Transporte/genética , Deficiência Intelectual/genética , Microcefalia/genética , Mutação , Proteínas de Transporte/metabolismo , Centrossomo , Criança , Cromossomos Humanos Par 4/genética , Cromossomos Humanos Par 4/metabolismo , Exoma , Éxons , Feminino , Técnicas de Silenciamento de Genes , Ligação Genética , Loci Gênicos , Homozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/fisiopatologia , Paquistão/epidemiologia , Linhagem , Polimorfismo de Nucleotídeo Único , Interferência de RNA , Análise de Sequência de DNA
12.
Am J Hum Genet ; 90(4): 661-74, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22482805

RESUMO

Bone morphogenetic protein 1 (BMP1) is an astacin metalloprotease with important cellular functions and diverse substrates, including extracellular-matrix proteins and antagonists of some TGFß superfamily members. Combining whole-exome sequencing and filtering for homozygous stretches of identified variants, we found a homozygous causative BMP1 mutation, c.34G>C, in a consanguineous family affected by increased bone mineral density and multiple recurrent fractures. The mutation is located within the BMP1 signal peptide and leads to impaired secretion and an alteration in posttranslational modification. We also characterize a zebrafish bone mutant harboring lesions in bmp1a, demonstrating conservation of BMP1 function in osteogenesis across species. Genetic, biochemical, and histological analyses of this mutant and a comparison to a second, similar locus reveal that Bmp1a is critically required for mature-collagen generation, downstream of osteoblast maturation, in bone. We thus define the molecular and cellular bases of BMP1-dependent osteogenesis and show the importance of this protein for bone formation and stability.


Assuntos
Proteína Morfogenética Óssea 1/fisiologia , Osteogênese/genética , Osteogênese/fisiologia , Animais , Sequência de Bases , Conservadores da Densidade Óssea/uso terapêutico , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular , Pré-Escolar , Colágeno/biossíntese , Difosfonatos/uso terapêutico , Exoma , Feminino , Fraturas Ósseas/tratamento farmacológico , Fraturas Ósseas/prevenção & controle , Loci Gênicos , Proteínas de Choque Térmico , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteogênese/efeitos dos fármacos , Fragmentos de Peptídeos , Processamento de Proteína Pós-Traducional , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
13.
Am J Hum Genet ; 91(6): 998-1010, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23200864

RESUMO

Ubiquitination plays a crucial role in neurodevelopment as exemplified by Angelman syndrome, which is caused by genetic alterations of the ubiquitin ligase-encoding UBE3A gene. Although the function of UBE3A has been widely studied, little is known about its paralog UBE3B. By using exome and capillary sequencing, we here identify biallelic UBE3B mutations in four patients from three unrelated families presenting an autosomal-recessive blepharophimosis-ptosis-intellectual-disability syndrome characterized by developmental delay, growth retardation with a small head circumference, facial dysmorphisms, and low cholesterol levels. UBE3B encodes an uncharacterized E3 ubiquitin ligase. The identified UBE3B variants include one frameshift and two splice-site mutations as well as a missense substitution affecting the highly conserved HECT domain. Disruption of mouse Ube3b leads to reduced viability and recapitulates key aspects of the human disorder, such as reduced weight and brain size and a downregulation of cholesterol synthesis. We establish that the probable Caenorhabditis elegans ortholog of UBE3B, oxi-1, functions in the ubiquitin/proteasome system in vivo and is especially required under oxidative stress conditions. Our data reveal the pleiotropic effects of UBE3B deficiency and reinforce the physiological importance of ubiquitination in neuronal development and function in mammals.


Assuntos
Blefarofimose/genética , Blefaroptose/genética , Deficiência Intelectual/genética , Ubiquitina-Proteína Ligases/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Blefarofimose/diagnóstico , Blefaroptose/diagnóstico , Encéfalo/patologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sistema Nervoso Central , Criança , Pré-Escolar , Exoma , Fácies , Feminino , Genótipo , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Mutação , Estresse Oxidativo , Síndrome , Ubiquitina-Proteína Ligases/deficiência
14.
Biochim Biophys Acta ; 1833(5): 1190-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23391410

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths, worldwide. MicroRNAs, inhibiting gene expression by targeting various transcripts, are involved in genomic dysregulation during hepatocellular tumorigenesis. In previous studies, microRNA-198 (miR-198) was shown to be significantly downregulated in HCV-positive hepatocellular carcinoma (HCC). Herein, the function of miR-198 in hepatocellular carcinoma cell growth and gene expression was studied. In hepatoma cell-types with low levels of liver-specific transcription factor HNF1α indicating a low differentiation grade, miR-198 expression was most downregulated. However, miR-198 treatment did not restore the expression of the liver-specific transcription factors HNF1α or HNF4α. Importantly, overexpression of miR-198 in Pop10 hepatoma cells markedly reduced cell growth. In agreement, comprehensive gene expression profiling by microarray hybridisation and real-time quantification revealed that central signal transducers of proliferation pathways were downregulated by miR-198. In contrast, genes mediating cellular adherence were highly upregulated by miR-198. Thus, the low expression of E-cadherin and claudin-1, involved in cell adhesion and cell-cell contacts, was abolished in hepatoma cells after miR-198 overexpression. This definite induction of both proteins by miR-198 was shown to be accompanied by a significantly impaired migration activity of hepatoma Pop10 cells. In conclusion, miR-198 acts as a tumor suppressor by repression of mitogenic and motogenic pathways diminishing cell growth and migration.


Assuntos
Carcinoma Hepatocelular , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Caderinas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Claudina-1/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
15.
BMC Genomics ; 15: 776, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25199885

RESUMO

BACKGROUND: Cyanobacteria constitute a serious threat to freshwater ecosystems by producing toxic secondary metabolites, e.g. microcystins. These microcystins have been shown to harm livestock, pets and humans and to affect ecosystem service and functioning. Cyanobacterial blooms are increasing worldwide in intensity and frequency due to eutrophication and global warming. However, Daphnia, the main grazer of planktonic algae and cyanobacteria, has been shown to be able to suppress bloom-forming cyanobacteria and to adapt to cyanobacteria that produce microcystins. Since Daphnia's genome was published only recently, it is now possible to elucidate the underlying molecular mechanisms of microcystin tolerance of Daphnia. RESULTS: Daphnia magna was fed with either a cyanobacterial strain that produces microcystins or its genetically engineered microcystin knock-out mutant. Thus, it was possible to distinguish between effects due to the ingestion of cyanobacteria and effects caused specifically by microcystins. By using RNAseq the differentially expressed genes between the different treatments were analyzed and affected KOG-categories were calculated. Here we show that the expression of transporter genes in Daphnia was regulated as a specific response to microcystins. Subsequent qPCR and dietary supplementation with pure microcystin confirmed that the regulation of transporter gene expression was correlated with the tolerance of several Daphnia clones. CONCLUSIONS: Here, we were able to identify new candidate genes that specifically respond to microcystins by separating cyanobacterial effects from microcystin effects. The involvement of these candidate genes in tolerance to microcystins was validated by correlating the difference in transporter gene expression with clonal tolerance. Thus, the prevention of microcystin uptake most probably constitutes a key mechanism in the development of tolerance and adaptation of Daphnia. With the availability of clear candidate genes, future investigations examining the process of local adaptation of Daphnia populations to microcystins are now possible.


Assuntos
Biotransformação/genética , Daphnia/genética , Daphnia/metabolismo , Microcistinas/metabolismo , Animais , Cianobactérias/metabolismo , Ecossistema , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Transcriptoma
16.
Am J Hum Genet ; 88(5): 621-7, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21549336

RESUMO

The fact that hereditary hearing loss is the most common sensory disorder in humans is reflected by, among other things, an extraordinary allelic and nonallelic genetic heterogeneity. X-chromosomal hearing impairment represents only a minor fraction of all cases. In a study of a Spanish family the locus for one of the X-chromosomal forms was assigned to Xp22 (DFNX4). We mapped the disease locus in the same chromosomal region in a large German pedigree with X-chromosomal nonsyndromic hearing impairment by using genome-wide linkage analysis. Males presented with postlingual hearing loss and onset at ages 3-7, whereas onset in female carriers was in the second to third decades. Targeted DNA capture with high-throughput sequencing detected a nonsense mutation in the small muscle protein, X-linked (SMPX) of affected individuals. We identified another nonsense mutation in SMPX in patients from the Spanish family who were previously analyzed to map DFNX4. SMPX encodes an 88 amino acid, cytoskeleton-associated protein that is responsive to mechanical stress. The presence of Smpx in hair cells and supporting cells of the murine cochlea indicates its role in the inner ear. The nonsense mutations detected in the two families suggest a loss-of-function mechanism underlying this form of hearing impairment. Results obtained after heterologous overexpression of SMPX proteins were compatible with this assumption. Because responsivity to physical force is a characteristic feature of the protein, we propose that long-term maintenance of mechanically stressed inner-ear cells critically depends on SMPX function.


Assuntos
Cromossomos Humanos X/genética , Códon sem Sentido , Perda Auditiva/genética , Proteínas Musculares/genética , Adolescente , Idade de Início , Alelos , Animais , Criança , Pré-Escolar , Cóclea , Orelha Interna/embriologia , Orelha Interna/metabolismo , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Células Ciliadas Auditivas/metabolismo , Haplótipos , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linhagem
17.
Am J Hum Genet ; 89(5): 668-74, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22077972

RESUMO

Urinary bladder malformations associated with bladder outlet obstruction are a frequent cause of progressive renal failure in children. We here describe a muscarinic acetylcholine receptor M3 (CHRM3) (1q41-q44) homozygous frameshift mutation in familial congenital bladder malformation associated with a prune-belly-like syndrome, defining an isolated gene defect underlying this sometimes devastating disease. CHRM3 encodes the M3 muscarinic acetylcholine receptor, which we show is present in developing renal epithelia and bladder muscle. These observations may imply that M3 has a role beyond its known contribution to detrusor contractions. This Mendelian disease caused by a muscarinic acetylcholine receptor mutation strikingly phenocopies Chrm3 null mutant mice.


Assuntos
Erros Inatos do Metabolismo/genética , Síndrome do Abdome em Ameixa Seca/genética , Receptor Muscarínico M3 , Bexiga Urinária , Animais , Sequência de Bases , Consanguinidade , Feminino , Mutação da Fase de Leitura/genética , Humanos , Mutação INDEL/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Síndrome do Abdome em Ameixa Seca/patologia , Receptor Muscarínico M3/deficiência , Receptor Muscarínico M3/genética , Homologia de Sequência do Ácido Nucleico , Fatores Sexuais , Bexiga Urinária/embriologia , Bexiga Urinária/patologia , Obstrução do Colo da Bexiga Urinária/genética , Obstrução do Colo da Bexiga Urinária/patologia
18.
Nat Metab ; 6(6): 1053-1075, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38684889

RESUMO

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5' truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation.


Assuntos
Adenilil Ciclases , Tecido Adiposo Marrom , Temperatura Baixa , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Tecido Adiposo Marrom/metabolismo , Animais , Camundongos , Masculino , Humanos , Termogênese/genética , Metabolismo Energético , AMP Cíclico/metabolismo , Camundongos Knockout
19.
BMC Genomics ; 14: 559, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23947592

RESUMO

BACKGROUND: Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1(-/Δ) progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. RESULTS: In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1(-/Δ) mice showed cluster formation between young WT and Ercc1(-/Δ) as well as old WT and Ercc1(-/Δ) samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1(-/Δ) mice (p < 0.0001). GO term enrichment analysis revealed these genes to be involved in immune and inflammatory response, cell death, and chemotaxis. In a network analysis, these genes were part of insulin signaling, chemokine and cytokine signaling and extracellular matrix pathways. CONCLUSION: Beyond insulin signaling, we find chemokine and cytokine signaling as well as modifiers of extracellular matrix composition to be subject to major changes in the aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1(-/Δ) mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies.


Assuntos
Envelhecimento/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Perfilação da Expressão Gênica , Glomérulos Renais/metabolismo , Fatores Etários , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Nefropatias/etiologia , Masculino , Camundongos , Camundongos Knockout , Anotação de Sequência Molecular , Análise de Componente Principal , Progéria/genética , Progéria/metabolismo , Transdução de Sinais
20.
BMC Genomics ; 14: 923, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24373391

RESUMO

BACKGROUND: The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. RESULTS: We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. CONCLUSIONS: Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model.


Assuntos
Evolução Biológica , Enoplídios/genética , Genoma Helmíntico , Animais , Caenorhabditis elegans/genética , Enoplídios/crescimento & desenvolvimento , Biblioteca Gênica , Transcriptoma , Tribolium/genética , Trichinella spiralis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA