Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
PLoS Pathog ; 19(5): e1011368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155700

RESUMO

The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Repetição de Anquirina Projetadas , Helicobacter pylori/metabolismo , Infecções por Helicobacter/microbiologia
2.
Nucleic Acids Res ; 51(6): 2800-2817, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36806960

RESUMO

RecA-mediated homologous recombination (HR) is a key mechanism for genome maintenance and plasticity in bacteria. It proceeds through RecA assembly into a dynamic filament on ssDNA, the presynaptic filament, which mediates DNA homology search and ordered DNA strand exchange. Here, we combined structural, single molecule and biochemical approaches to characterize the ATP-dependent assembly mechanism of the presynaptic filament of RecA from Streptococcus pneumoniae (SpRecA), in comparison to the Escherichia coli RecA (EcRecA) paradigm. EcRecA polymerization on ssDNA is assisted by the Single-Stranded DNA Binding (SSB) protein, which unwinds ssDNA secondary structures that block EcRecA nucleofilament growth. We report by direct microscopic analysis of SpRecA filamentation on ssDNA that neither of the two paralogous pneumococcal SSBs could assist the extension of SpRecA nucleopolymers. Instead, we found that the conserved RadA helicase promotes SpRecA nucleofilamentation in an ATP-dependent manner. This allowed us to solve the atomic structure of such a long native SpRecA nucleopolymer by cryoEM stabilized with ATPγS. It was found to be equivalent to the crystal structure of the EcRecA filament with a marked difference in how RecA mediates nucleotide orientation in the stretched ssDNA. Then, our results show that SpRecA and EcRecA HR activities are different, in correlation with their distinct ATP-dependent ssDNA binding modes.


Assuntos
Recombinases Rec A , Streptococcus pneumoniae , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Recombinases Rec A/metabolismo , Recombinases Rec A/ultraestrutura , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Microscopia Crioeletrônica
3.
EMBO J ; 39(11): e104129, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32350888

RESUMO

The bacterial type VI secretion system (T6SS) is a macromolecular machine that injects effectors into prokaryotic and eukaryotic cells. The mode of action of the T6SS is similar to contractile phages: the contraction of a sheath structure pushes a tube topped by a spike into target cells. Effectors are loaded onto the spike or confined into the tube. In enteroaggregative Escherichia coli, the Tle1 phospholipase binds the C-terminal extension of the VgrG trimeric spike. Here, we purify the VgrG-Tle1 complex and show that a VgrG trimer binds three Tle1 monomers and inhibits their activity. Using covalent cross-linking coupled to high-resolution mass spectrometry, we provide information on the sites of contact and further identify the requirement for a Tle1 N-terminal secretion sequence in complex formation. Finally, we report the 2.6-Å-resolution cryo-electron microscopy tri-dimensional structure of the (VgrG)3 -(Tle1)3 complex revealing how the effector binds its cargo, and how VgrG inhibits Tle1 phospholipase activity. The inhibition of Tle1 phospholipase activity once bound to VgrG suggests that Tle1 dissociation from VgrG is required upon delivery.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfolipases/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fosfolipases/genética , Sistemas de Secreção Tipo VI/genética
4.
EMBO J ; 38(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30877094

RESUMO

Bacteria have evolved macromolecular machineries that secrete effectors and toxins to survive and thrive in diverse environments. The type VI secretion system (T6SS) is a contractile machine that is related to Myoviridae phages. It is composed of a phage tail-like structure inserted in the bacterial cell envelope by a membrane complex (MC) comprising the TssJ, TssL and TssM proteins. We previously reported the low-resolution negative-stain electron microscopy structure of the enteroaggregative Escherichia coli MC and proposed a rotational 5-fold symmetry with a TssJ:TssL:TssM stoichiometry of 2:2:2. Here, cryo-electron tomography analyses of the T6SS MC confirm the 5-fold symmetry in situ and identify the regions of the structure that insert into the bacterial membranes. A high-resolution model obtained by single-particle cryo-electron microscopy highlights new features: five additional copies of TssJ, yielding a TssJ:TssL:TssM stoichiometry of 3:2:2, an 11-residue loop in TssM, protruding inside the lumen of the MC and constituting a functionally important periplasmic gate, and hinge regions. Based on these data, we propose an updated model on MC structure and dynamics during T6SS assembly and function.


Assuntos
Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína
5.
Annu Rev Microbiol ; 72: 231-254, 2018 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-30004822

RESUMO

Bacterial secretion systems are responsible for releasing macromolecules to the extracellular milieu or directly into other cells. These membrane complexes are associated with pathogenicity and bacterial fitness. Understanding of these large assemblies has exponentially increased in the last few years thanks to electron microscopy. In fact, a revolution in this field has led to breakthroughs in characterizing the structures of secretion systems and other macromolecular machineries so as to obtain high-resolution images of complexes that could not be crystallized. In this review, we give a brief overview of structural advancements in the understanding of secretion systems, focusing in particular on cryo-electron microscopy, whether tomography or single-particle analysis. We describe how such techniques have contributed to knowledge of the mechanism of macromolecule secretion in bacteria and the impact they will have in the future.


Assuntos
Bactérias/enzimologia , Sistemas de Secreção Bacterianos/ultraestrutura , Microscopia Crioeletrônica/métodos , Microscopia Crioeletrônica/tendências
6.
Nature ; 531(7592): 59-63, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26909579

RESUMO

Contractile tails are composed of an inner tube wrapped by an outer sheath assembled in an extended, metastable conformation that stores mechanical energy necessary for its contraction. Contraction is used to propel the rigid inner tube towards target cells for DNA or toxin delivery. Although recent studies have revealed the structure of the contractile sheath of the type VI secretion system, the mechanisms by which its polymerization is controlled and coordinated with the assembly of the inner tube remain unknown. Here we show that the starfish-like TssA dodecameric complex interacts with tube and sheath components. Fluorescence microscopy experiments in enteroaggregative Escherichia coli reveal that TssA binds first to the type VI secretion system membrane core complex and then initiates tail polymerization. TssA remains at the tip of the growing structure and incorporates new tube and sheath blocks. On the basis of these results, we propose that TssA primes and coordinates tail tube and sheath biogenesis.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Polimerização , Cristalografia por Raios X , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Microscopia Eletrônica , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Terciária de Proteína , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/metabolismo , Sistemas de Secreção Tipo VI/ultraestrutura
7.
Nature ; 523(7562): 555-60, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26200339

RESUMO

Bacteria share their ecological niches with other microbes. The bacterial type VI secretion system is one of the key players in microbial competition, as well as being an important virulence determinant during bacterial infections. It assembles a nano-crossbow-like structure in the cytoplasm of the attacker cell that propels an arrow made of a haemolysin co-regulated protein (Hcp) tube and a valine-glycine repeat protein G (VgrG) spike and punctures the prey's cell wall. The nano-crossbow is stably anchored to the cell envelope of the attacker by a membrane core complex. Here we show that this complex is assembled by the sequential addition of three type VI subunits (Tss)-TssJ, TssM and TssL-and present a structure of the fully assembled complex at 11.6 Å resolution, determined by negative-stain electron microscopy. With overall C5 symmetry, this 1.7-megadalton complex comprises a large base in the cytoplasm. It extends in the periplasm via ten arches to form a double-ring structure containing the carboxy-terminal domain of TssM (TssMct) and TssJ that is anchored in the outer membrane. The crystal structure of the TssMct-TssJ complex coupled to whole-cell accessibility studies suggest that large conformational changes induce transient pore formation in the outer membrane, allowing passage of the attacking Hcp tube/VgrG spike.


Assuntos
Sistemas de Secreção Bacterianos , Proteínas de Escherichia coli/química , Escherichia coli/química , Lipopeptídeos/química , Proteínas de Membrana/química , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Membrana Celular/química , Membrana Celular/metabolismo , Cristalografia por Raios X , Citoplasma/química , Citoplasma/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Lipopeptídeos/biossíntese , Proteínas de Membrana/biossíntese , Microscopia Eletrônica , Modelos Moleculares , Periplasma/química , Periplasma/metabolismo , Porosidade , Estrutura Terciária de Proteína , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química
10.
Nature ; 508(7497): 550-553, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24670658

RESUMO

Bacterial type IV secretion systems translocate virulence factors into eukaryotic cells, distribute genetic material between bacteria and have shown potential as a tool for the genetic modification of human cells. Given the complex choreography of the substrate through the secretion apparatus, the molecular mechanism of the type IV secretion system has proved difficult to dissect in the absence of structural data for the entire machinery. Here we use electron microscopy to reconstruct the type IV secretion system encoded by the Escherichia coli R388 conjugative plasmid. We show that eight proteins assemble in an intricate stoichiometric relationship to form an approximately 3 megadalton nanomachine that spans the entire cell envelope. The structure comprises an outer membrane-associated core complex connected by a central stalk to a substantial inner membrane complex that is dominated by a battery of 12 VirB4 ATPase subunits organized as side-by-side hexameric barrels. Our results show a secretion system with markedly different architecture, and consequently mechanism, to other known bacterial secretion systems.


Assuntos
Sistemas de Secreção Bacterianos , Escherichia coli/química , Escherichia coli/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Sistemas de Secreção Bacterianos/genética , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura
11.
Nature ; 516(7530): 250-3, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25219853

RESUMO

Curli are functional amyloid fibres that constitute the major protein component of the extracellular matrix in pellicle biofilms formed by Bacteroidetes and Proteobacteria (predominantly of the α and γ classes). They provide a fitness advantage in pathogenic strains and induce a strong pro-inflammatory response during bacteraemia. Curli formation requires a dedicated protein secretion machinery comprising the outer membrane lipoprotein CsgG and two soluble accessory proteins, CsgE and CsgF. Here we report the X-ray structure of Escherichia coli CsgG in a non-lipidated, soluble form as well as in its native membrane-extracted conformation. CsgG forms an oligomeric transport complex composed of nine anticodon-binding-domain-like units that give rise to a 36-stranded ß-barrel that traverses the bilayer and is connected to a cage-like vestibule in the periplasm. The transmembrane and periplasmic domains are separated by a 0.9-nm channel constriction composed of three stacked concentric phenylalanine, asparagine and tyrosine rings that may guide the extended polypeptide substrate through the secretion pore. The specificity factor CsgE forms a nonameric adaptor that binds and closes off the periplasmic face of the secretion channel, creating a 24,000 Å(3) pre-constriction chamber. Our structural, functional and electrophysiological analyses imply that CsgG is an ungated, non-selective protein secretion channel that is expected to employ a diffusion-based, entropy-driven transport mechanism.


Assuntos
Amiloide/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Biofilmes , Membrana Celular , Cristalografia por Raios X , Difusão , Entropia , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Modelos Moleculares , Periplasma/metabolismo , Conformação Proteica , Transporte Proteico
12.
Curr Issues Mol Biol ; 25: 1-42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28875938

RESUMO

In this review we examine the use of secretion systems by bacteria to subvert host functions. Bacteria have evolved multiple systems to interact with and overcome their eukaryotic host and other prokaryotes. Secretion systems are required for the release of several effectors through the bacterial membrane(s) into the extracellular space or directly into the cytoplasm of the host. We review the secretion systems of Gram-positive and Gram-negative bacteria and describe briefly the structural composition of the seven secretion systems that have been associated with increased virulence through subversion of host functions. Some of the effects of such systems on eukaryotic host processes have been studied extensively. We also describe the best-characterized effectors of each secretion system to give an overview of the molecular mechanisms employed by bacteria to hide from the immune system and convert eukaryotic cells into optimal ecological niches for their replication.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/classificação , Sistemas de Secreção Bacterianos/genética , Células Eucarióticas/microbiologia , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Modelos Moleculares , Periplasma/metabolismo , Estrutura Secundária de Proteína , Transporte Proteico , Virulência , Fatores de Virulência/genética
13.
Mol Microbiol ; 105(5): 741-754, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28618091

RESUMO

Pneumococcal natural transformation contributes to genomic plasticity, antibiotic resistance development and vaccine escape. Streptococcus pneumoniae, like many other naturally transformable species, has evolved sophisticated protein machinery for the binding and uptake of DNA. Two proteins encoded by the comF operon, ComFA and ComFC, are involved in transformation but their exact molecular roles remain unknown. In this study, we provide experimental evidence that ComFA binds to single stranded DNA (ssDNA) and has ssDNA-dependent ATPase activity. We show that both ComFA and ComFC are essential for the transformation process in pneumococci. Moreover, we show that these proteins interact with each other and with other proteins involved in homologous recombination, such as DprA, thus placing the ComFA-ComFC duo at the interface between DNA uptake and DNA recombination during transformation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transformação Bacteriana/fisiologia , Adenosina Trifosfatases/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Recombinação Homóloga , Proteínas de Membrana/metabolismo , Ligação Proteica , Recombinases Rec A/metabolismo , Recombinação Genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Transformação Bacteriana/genética
14.
Nat Methods ; 12(7): 649-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25984698

RESUMO

Studying biomolecules at atomic resolution in their native environment is the ultimate aim of structural biology. We investigated the bacterial type IV secretion system core complex (T4SScc) by cellular dynamic nuclear polarization-based solid-state nuclear magnetic resonance spectroscopy to validate a structural model previously generated by combining in vitro and in silico data. Our results indicate that T4SScc is well folded in the cellular setting, revealing protein regions that had been elusive when studied in vitro.


Assuntos
Proteínas de Bactérias/química , Espectroscopia de Ressonância Magnética/métodos , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína
15.
Nature ; 487(7405): 119-22, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22722836

RESUMO

S-layers are regular two-dimensional semipermeable protein layers that constitute a major cell-wall component in archaea and many bacteria. The nanoscale repeat structure of the S-layer lattices and their self-assembly from S-layer proteins (SLPs) have sparked interest in their use as patterning and display scaffolds for a range of nano-biotechnological applications. Despite their biological abundance and the technological interest in them, structural information about SLPs is limited to truncated and assembly-negative proteins. Here we report the X-ray structure of the SbsB SLP of Geobacillus stearothermophilus PV72/p2 by the use of nanobody-aided crystallization. SbsB consists of a seven-domain protein, formed by an amino-terminal cell-wall attachment domain and six consecutive immunoglobulin-like domains, that organize into a φ-shaped disk-like monomeric crystallization unit stabilized by interdomain Ca(2+) ion coordination. A Ca(2+)-dependent switch to the condensed SbsB quaternary structure pre-positions intermolecular contact zones and renders the protein competent for S-layer assembly. On the basis of crystal packing, chemical crosslinking data and cryo-electron microscopy projections, we present a model for the molecular organization of this SLP into a porous protein sheet inside the S-layer. The SbsB lattice represents a previously undescribed structural model for protein assemblies and may advance our understanding of SLP physiology and self-assembly, as well as the rational design of engineered higher-order structures for biotechnology.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cálcio/farmacologia , Geobacillus stearothermophilus/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Cálcio/química , Cálcio/metabolismo , Microscopia Crioeletrônica , Cristalização/métodos , Cristalografia por Raios X , Imunoglobulinas/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Nanoestruturas/química , Polimerização/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Soluções
16.
EMBO J ; 32(8): 1195-204, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23511972

RESUMO

Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1-11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane-spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O-layer inserted in the outer membrane and the I-layer inserted in the inner membrane. While the structure of the O-layer has been solved by X-ray crystallography, there is no detailed structural information on the I-layer. Using high-resolution cryo-electron microscopy and molecular modelling combined with biochemical approaches, we determined the I-layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived.


Assuntos
Agrobacterium tumefaciens/química , Sistemas de Secreção Bacterianos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
17.
PLoS Pathog ; 11(4): e1004835, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25876066

RESUMO

The success of S. pneumoniae as a major human pathogen is largely due to its remarkable genomic plasticity, allowing efficient escape from antimicrobials action and host immune response. Natural transformation, or the active uptake and chromosomal integration of exogenous DNA during the transitory differentiated state competence, is the main mechanism for horizontal gene transfer and genomic makeover in pneumococci. Although transforming DNA has been proposed to be captured by Type 4 pili (T4P) in Gram-negative bacteria, and a competence-inducible comG operon encoding proteins homologous to T4P-biogenesis components is present in transformable Gram-positive bacteria, a prevailing hypothesis has been that S. pneumoniae assembles only short pseudopili to destabilize the cell wall for DNA entry. We recently identified a micrometer-sized T4P-like pilus on competent pneumococci, which likely serves as initial DNA receptor. A subsequent study, however, visualized a different structure--short, 'plaited' polymers--released in the medium of competent S. pneumoniae. Biochemical observation of concurrent pilin secretion led the authors to propose that the 'plaited' structures correspond to transformation pili acting as peptidoglycan drills that leave DNA entry pores upon secretion. Here we show that the 'plaited' filaments are not related to natural transformation as they are released by non-competent pneumococci, as well as by cells with disrupted pilus biogenesis components. Combining electron microscopy visualization with structural, biochemical and proteomic analyses, we further identify the 'plaited' polymers as spirosomes: macromolecular assemblies of the fermentative acetaldehyde-alcohol dehydrogenase enzyme AdhE that is well conserved in a broad range of Gram-positive and Gram-negative bacteria.


Assuntos
Fímbrias Bacterianas/ultraestrutura , Streptococcus pneumoniae/ultraestrutura , Transferência Genética Horizontal , Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase , Proteômica , Streptococcus pneumoniae/genética , Transformação Bacteriana/genética
18.
Biochem J ; 473(14): 2239-48, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208170

RESUMO

Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70-90 Å (1 Å=0.1 nm) from the HasR ß-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Cristalografia por Raios X , Heme/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Ligação Proteica , Serratia marcescens/metabolismo , Transdução de Sinais/fisiologia
19.
PLoS Pathog ; 9(6): e1003473, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825953

RESUMO

Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus pneumoniae/metabolismo , Transformação Bacteriana/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/imunologia , Resistência a Medicamentos/fisiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/imunologia , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/imunologia , Humanos , Evasão da Resposta Imune/fisiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/patogenicidade
20.
Nature ; 462(7276): 1011-5, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19946264

RESUMO

Type IV secretion systems are secretion nanomachines spanning the two membranes of Gram-negative bacteria. Three proteins, VirB7, VirB9 and VirB10, assemble into a 1.05 megadalton (MDa) core spanning the inner and outer membranes. This core consists of 14 copies of each of the proteins and forms two layers, the I and O layers, inserting in the inner and outer membrane, respectively. Here we present the crystal structure of a approximately 0.6 MDa outer-membrane complex containing the entire O layer. This structure is the largest determined for an outer-membrane channel and is unprecedented in being composed of three proteins. Unexpectedly, this structure identifies VirB10 as the outer-membrane channel with a unique hydrophobic double-helical transmembrane region. This structure establishes VirB10 as the only known protein crossing both membranes of Gram-negative bacteria. Comparison of the cryo-electron microscopy (cryo-EM) and crystallographic structures points to conformational changes regulating channel opening and closing.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/fisiologia , Modelos Moleculares , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Ligação Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA