Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Sci Technol ; 46(20): 11251-8, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23030048

RESUMO

Effective collection of trace-level lanthanides and actinides is advantageous for recovery and recycling of valuable resources, environmental remediation, chemical separations, and in situ monitoring. Using isotopic tracers, we have evaluated a number of conventional and nanoporous sorbent materials for their ability to capture and remove selected lanthanides (Ce and Eu) and actinides (Th, Pa, U, and Np) from fresh and salt water systems. In general, the nanostructured materials demonstrated a higher level of performance and consistency. Nanoporous silica surface modified with 3,4-hydroxypyridinone provided excellent collection and consistency in both river water and seawater. The MnO(2) materials, in particular the high surface area small particle material, also demonstrated good performance. Other conventional sorbents typically performed at levels below the nanostructured sorbents and demonstrate a larger variability and matrix dependency.


Assuntos
Elementos da Série Actinoide/análise , Recuperação e Remediação Ambiental/métodos , Elementos da Série dos Lantanídeos/análise , Nanoestruturas/química , Poluentes Químicos da Água/análise , Poluentes Radioativos da Água/análise , Elementos da Série Actinoide/química , Adsorção , Elementos da Série dos Lantanídeos/química , Rios/química , Água do Mar/química , Poluentes Químicos da Água/química , Poluentes Radioativos da Água/química
2.
Inorg Chem Commun ; 18: 92-96, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22942668

RESUMO

An improved synthesis of a 3,4 hydroxypyridinone (HOPO) functionalized mesoporous silica is described. Higher 3,4-HOPO monolayer ligand loadings have been achieved, resulting in better performance. Performance improvements were demonstrated with the capture of U(VI) from human blood, plasma and filtered river water.

3.
Environ Sci Technol ; 44(16): 6390-5, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20608701

RESUMO

Copper has been identified as a pollutant of concern by the U.S. Environmental Protection Agency (EPA) because of its widespread occurrence and toxic impact in the environment. Three nanoporous sorbents containing chelating diamine functionalities were evaluated for Cu(2+) adsorption from natural waters: ethylenediamine functionalized self-assembled monolayers on mesoporous supports (EDA-SAMMS), ethylenediamine functionalized activated carbon (AC-CH(2)-EDA), and 1,10-phenanthroline functionalized mesoporous carbon (Phen-FMC). The pH dependence of Cu(2+) sorption, Cu(2+) sorption capacities, rates, and selectivity of the sorbents were determined and compared with those of commercial sorbents (Chelex-100 ion-exchange resin and Darco KB-B activated carbon). All three chelating diamine sorbents showed excellent Cu(2+) removal (approximately 95-99%) from river water and seawater over the pH range 6.0-8.0. EDA-SAMMS and AC-CH(2)-EDA demonstrated rapid Cu(2+) sorption kinetics (minutes) and good sorption capacities (26 and 17 mg Cu/g sorbent, respectively) in seawater, whereas Phen-FMC had excellent selectivity for Cu(2+) over other metal ions (e.g., Ca(2+), Fe(2+), Ni(2+), and Zn(2+)) and was able to achieve Cu below the EPA recommended levels for river and sea waters.


Assuntos
Quelantes/química , Cobre/isolamento & purificação , Diaminas/química , Nanoestruturas/química , Rios/química , Água do Mar/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cátions Bivalentes/química , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Soluções , Temperatura
4.
Nanomedicine ; 6(1): 1-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19447204

RESUMO

Many forms of organocomplexed gadolinium (Gd) contrast agents have recently been linked to a debilitating and a potentially fatal skin disease called nephrogenic systemic fibrosis (NSF) in patients with renal failure. Free Gd released from these complexes via transmetallation is believed to be the most important trigger for NSF. In this work, nanostructure silica materials that have been functionalized with 1-hydroxy-2-pyridinone (1,2-HOPO-SAMMS) have been evaluated for selective and effective removal of both free and chelated Gd (gadopentetate dimeglumine and gadodiamide) from dialysate and blood. 1,2-HOPO SAMMS has high affinity, rapid removal rate, and large sorption capacity for both free and chelated Gd, properties that are far superior to those of activated carbon and zirconium phosphate currently used in the state-of-the-art sorbent dialysis and hemoperfusion systems. The SAMMS-based sorbent dialysis and hemoperfusion will potentially provide an effective and predicable strategy for removing the Gd from patients with impaired renal function after Gd exposure, thus allowing for the continued use of Gd-based contrast magnetic resonance imaging while removing the risk of NSF. FROM THE CLINICAL EDITOR: Chelated gadolinium (Gd) contrast agents have been linked to a debilitating disease called nephrogenic systemic fibrosis (NSF) in patients with renal failure. Free Gd+(3) released from the contrast agents is believed to be the trigger for NSF. In this work, functionalized nanostructured silica materials were evaluated for removal of both free and chelated gadolinium both from dialysate and blood. The new method demonstrated a rapid removal rate and large sorption capacity, and overall was far superior to currently used state-of-the-art sorbent dialysis and hemoperfusion systems.


Assuntos
Meios de Contraste/isolamento & purificação , Gadolínio/isolamento & purificação , Hemoperfusão , Dermopatia Fibrosante Nefrogênica/prevenção & controle , Diálise Renal , Dióxido de Silício/química , Adsorção , Animais , Meios de Contraste/efeitos adversos , Gadolínio/efeitos adversos , Gadolínio DTPA/isolamento & purificação , Cinética , Ratos , Temperatura
5.
Small ; 5(8): 961-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19242951

RESUMO

The ability to process and purify engineered nanomaterials using near critical or supercritical fluids (NcFs or ScFs) has enormous potential for the application at various stages of the development of green nanomaterials. The dispersibility of octanethiol-stabilized gold nanocrystals of different core sizes is explored, which were chosen to serve as model nanomaterials of general interest in compressed ethane and propane over a wide range of fluid conditions. Both solvents have enormous potential for the environmentally benign processing and transport of engineered nanomaterials due to their nominal toxicity and high degree of tunability and processability that can essentially eliminate solvent waste. The dispersibility is determined by measuring the absorption spectra of dispersions of various sizes of nanocrystals in NcFs. To better understand the obtained results three models, the total interaction theory, the sedimentation coefficient equation, and the Chrastil method, are discussed. Nanoparticle dispersibility versus density plots are strongly dependent on nanoparticle size and solvent conditions, with the dispersion of larger nanocrystals more dependent on changes of pressure or density at a given temperature. For the range of nanoparticle sizes studied, compressed ethane at 25 degrees C leads to a greater tunability of nanoparticle dispersion when compared with compressed propane at 65 degrees C. For equivalent pressures, compressed propane is found to provide better solubility than ethane due to its higher density. The results quantitatively demonstrate that NcFs can offer pressure-tunable, size-selective control of nanoparticle solvation and transport at easily obtainable temperature and pressure conditions. These capabilities provide clear advantages over conventional solvents and direct application to various nanomaterials processes, such as synthesis, separation, transport, and purification of nanocrystals.


Assuntos
Ouro/química , Nanopartículas/química , Nanoestruturas/química , Solventes/química , Cristalização , Etano/química , Propano/química , Temperatura
6.
Inorg Chem Commun ; 12(11): 1099-1103, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23762013

RESUMO

Functional mesoporous carbon has been built using 1,10-phenanthroline as the fundamental building block, resulting in a nanoporous, high surface area sorbent capable of selectively binding transition metal ions. This material had a specific surface area of 870 m2/g, an average pore size of about 30 Å, and contained as much as 8.2 wt% N. Under acidic conditions, where the 1,10-phenanthroline ligand is protonated, this material was found to be an effective anion exchange material for transition metal anions like [Formula: see text] and [Formula: see text]. 1,10-Phenanthroline functionalized mesoporous carbon ("Phen-FMC") was found to have a high affinity for Cu(II), even down to a pH of 1. At pHs above 5, Phen-FMC was found to bind a variety of transition metal cations (e.g. Co(II), Ni(II), Zn(II), etc.) from filtered ground water, river water and seawater. Phen-FMC displayed rapid sorption kinetics with Co(II) in filtered river water, reaching equilibrium in less than an hour, and easily lowering the [Co(II)] to sub-ppb levels. Phen-FMC was found to be more effective for transition metal ion capture than ion-exchange resin or activated carbon.

7.
Inorg Chem Commun ; 12(4): 312-315, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22068901

RESUMO

Iminodiacetic acid (IDAA) forms strong complexes with a wide variety of metal ions. Using self-assembled monolayers in mesoporous supports (SAMMS) to present the IDAA ligand potentially allows for multiple metal-ligand interactions to enhance the metal binding affinity relative to that of randomly oriented polymer-based supports. This manuscript describes the synthesis of a novel nanostructured sorbent material built using self-assembly of a IDAA ligand inside a nanoporous silica, and demonstrates its use for capturing transition metal cations, and anionic metal complexes, such as PdCl(4) (-2).

8.
Sci Rep ; 9(1): 709, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679698

RESUMO

Gadolinium based contrast agents (GBCAs) have been linked to toxicity in patients, regardless of having impaired or normal renal function. Currently, no therapy is considered highly effective for removing gadolinium (Gd) from the body. We propose a new strategy to reduce blood Gd content that facilitates whole body removal of Gd using a hemoperfusion system consisting of a cartridge of porous silica beads (Davisil®) functionalized with 1,2-hydroxypyridinone (1,2-HOPO). Herein, we report optimization of the hemoperfusion system using an ex vivo blood and an in vivo rat model of chronic kidney disease (CKD). In our ex vivo system, 1,2-HOPO-Davisil outperformed Gambro activated charcoal (AC), which is commonly used in clinical hemoperfusion of aqueous toxins, in terms of Gd capture capacity and rate. In the CKD rat model, the 1,2-HOPO-Davisil hemoperfusion system removed Gd by 3.4 times over the Gambro AC system. 1,2-HOPO-Davisil did not change complete blood counts and common blood biochemistry. Thus, this strategy has great potential for clinical translation to manage GBCAs after magnetic resonance imaging (MRI), before Gd can deposit in the body and cause long-term toxicity. Although gadodiamide was used as a proof of concept model for GBCAs in this study, 1,2-HOPO functionalized mesoporous silica could also capture dissociated Gd and other GBCAs.


Assuntos
Adenina/toxicidade , Meios de Contraste/isolamento & purificação , Modelos Animais de Doenças , Hipersensibilidade a Drogas/prevenção & controle , Hemoperfusão/métodos , Compostos Organometálicos/isolamento & purificação , Insuficiência Renal Crônica/prevenção & controle , Animais , Meios de Contraste/efeitos adversos , Gadolínio DTPA/efeitos adversos , Gadolínio DTPA/isolamento & purificação , Testes de Função Renal , Imageamento por Ressonância Magnética , Masculino , Compostos Organometálicos/efeitos adversos , Ratos , Ratos Wistar , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/patologia , Dióxido de Silício/química
9.
J Hazard Mater ; 366: 677-683, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30580142

RESUMO

This work evaluated sorbent materials created from nanoporous silica self-assembled with monolayer (SAMMS) of hydroxypyridinone derivatives (1,2-HOPO, 3,2-HOPO, 3,4-HOPO), acetamide phosphonate (Ac-Phos), glycine derivatives (IDAA, DE4A, ED3A), and thiol (SH) for capturing of actinides and transition metal cobalt. In filtered seawater doped with competing metals (Cr, Mn, Fe, Co, Cu, Zn, Se, Mo) at levels encountered in environmental or physiological samples, 3,4-HOPO-SAMMS was best at capturing uranium (U(VI)) from pH 2-8, Ac-Phos and 1,2-HOPO-SAMMS sorbents were best at pH < 2. 3,4-HOPO-SAMMS effectively captured thorium (Th(IV)) and plutonium (239Pu(IV)) from pH 2-8, and americium (241Am(III)) from pH 5-8. Capturing cobalt (Co(II)) from filtered river water doped with competing metals (Cu, As, Ag, Cd, Hg, Tl, and Pb) was most effective from pH 5-8 with binding affinity ranged from IDAA > DE4A > ED3A > Ac-Phos > SH on SAMMS. Iminodiacetic acid (IDAA)-SAMMS was also outstanding at capturing Co(II) in ground and seawater. Within 5 min, over 99% of U(VI) and Co(II) in seawater was captured by 3,4-HOPO-SAMMS and IDAA-SAMMS, respectively. These nanoporous materials outperformed the commercially available cation sorbents in binding affinity and adsorption rate. They have great potential for water treatment and recovery of actinides and cobalt from complex matrices.

10.
Chem Commun (Camb) ; (43): 5583-5, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18997959

RESUMO

A new class of sorbent material, which exhibits exceptional metal capture from contaminated natural water, features aromatic thiol ligands reversibly bound to functionalized mesoporous silica through non-covalent interactions and have the potential of being regenerable.


Assuntos
Metais Pesados/química , Dióxido de Silício/química , Compostos de Sulfidrila/química , Adsorção , Compostos de Benzil/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Substâncias Macromoleculares/química , Teste de Materiais , Estrutura Molecular , Porosidade , Propriedades de Superfície , Temperatura
11.
J Nanosci Nanotechnol ; 8(11): 5781-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19198305

RESUMO

In this work we introduce an efficient method for averting non-specific adsorption of various nanoparticles to typical oxide surfaces, such as glass, quartz, and sapphire, through the attachment of a fluorinated self-assembled monolayer (SAM) that minimizes the interactions between stabilized nanoparticles and these surfaces. This surface treatment is shown to be effective for a variety of nanoparticles in a range of solvent systems. As a result, monitoring and characterization of nanoparticles and their surface chemistry is allowed, while simultaneously preventing loss of expensive nanomaterials to the various surfaces inherent in laboratory apparatus.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Óxidos/química , Adsorção , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
Environ Health Perspect ; 115(12): 1683-90, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18087583

RESUMO

To support the development and implementation of biological monitoring programs, we need quantitative technologies for measuring xenobiotic exposure. Microanalytical based sensors that work with complex biomatrices such as blood, urine, or saliva are being developed and validated and will improve our ability to make definitive associations between chemical exposures and disease. Among toxic metals, lead continues to be one of the most problematic. Despite considerable efforts to identify and eliminate Pb exposure sources, this metal remains a significant health concern, particularly for young children. Ongoing research focuses on the development of portable metal analyzers that have many advantages over current available technologies, thus potentially representing the next generation of toxic metal analyzers. In this article, we highlight the development and validation of two classes of metal analyzers for the voltammetric detection of Pb, including: a) an analyzer based on flow injection analysis and anodic stripping voltammetry at a mercury-film electrode, and b) Hg-free metal analyzers employing adsorptive stripping voltammetry and novel nanostructure materials that include the self-assembled monolayers on mesoporous supports and carbon nanotubes. These sensors have been optimized to detect Pb in urine, blood, and saliva as accurately as the state-of-the-art inductively coupled plasma-mass spectrometry with high reproducibility, and sensitivity allows. These improved and portable analytical sensor platforms will facilitate our ability to conduct biological monitoring programs to understand the relationship between chemical exposure assessment and disease outcomes.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletroquímica/instrumentação , Exposição Ambiental , Chumbo/análise , Animais , Eletrodos , Análise de Injeção de Fluxo , Humanos , Chumbo/farmacocinética
13.
Water Res ; 41(15): 3217-26, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17572470

RESUMO

Uniformly arrayed zirconium-phosphate nanoporous material was synthesized, characterized, and used as an adsorbent for removal of U(VI) in a NaNO3 solution with varying background conditions including pH, ionic strength, U(VI) concentrations, and carbonate concentrations. Batch U(VI) adsorption results showed that U(VI) adsorption reached steady-state condition within 48 h, and all the dissolved U(VI) (10(-6)M) was removed by this material at neutral pH and closed conditions to atmospheric CO2(g). The U(VI) adsorption followed a traditional Langmuir adsorption isotherm, and the distribution coefficient (K(d)) calculated from the linear region of the Langmuir isotherm was 105,000 mL g(-1). Because this phosphate-bearing nanoporous material exhibits high thermal stability and has a very high Kd value, it can be applied as an efficient adsorbent for removing U(VI) from various contaminated waste streams, such as those present at the US Department of Energy defense sites and the proposed geologic radioactive waste disposal facility at Yucca Mountain in Nevada.


Assuntos
Urânio/química , Poluentes Radioativos da Água/química , Zircônio/química , Adsorção , Carbaril , Porosidade , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
14.
J Nanosci Nanotechnol ; 5(9): 1537-40, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16193970

RESUMO

We have successfully developed electrochemical sensors based on functionalized nanostructured materials for voltammetric analysis of toxic metal ions. Glycinylurea self-assembled monolayers on mesoporous silica (Gly-UR SAMMS) were incorporated in carbon paste electrodes for the detection of toxic metal ions such as lead, copper, and mercury based on adsorptive stripping voltammetry (AdSV). The electrochemical sensor yields a linear response at a low ppb level of Pb2+ (i.e., 2.5-50 ppb) after a 2-min preconcentration period, with reproducible measurements (%RSD = 3.5, N = 6) and an excellent detection limit (1 ppb). By exploiting the interfacial functionality of Gly-UR SAMMS, the sensor is selective for the target species, does not require the use of a mercury film, and can be easily regenerated in dilute acid solution. The rigid, open, parallel pore structure, combined with suitable interfacial chemistry of SAMMS, also results in fast analysis times (2-3 min). The nanostructured SAMMS materials enable the development of miniature sensing devices that are compact and low cost, have low energy consumption, and are easily integrated into field-deployable units.


Assuntos
Cobre/análise , Eletroquímica/instrumentação , Chumbo/análise , Mercúrio/análise , Nanotecnologia/instrumentação , Dióxido de Silício/química , Transdutores , Eletroquímica/métodos , Poluentes Ambientais/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanoestruturas/análise , Nanoestruturas/química , Nanotecnologia/métodos , Porosidade
15.
J Nanosci Nanotechnol ; 5(4): 527-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16004114

RESUMO

1,2-Hydroxypyridinone (1,2-HOPO) ligands were installed as self-assembled monolayers on nanoporous silica (MCM-41) to create a superior class of sorbent materials for lanthanide cations. Lanthanides were used as a model system for the radioactive, expensive, and highly hazardous actinides in preliminary screening studies. The ligand properties of the 1,2-HOPO ligand field and the extremely large surface area of MCM-41, coupled with the dense monolayer coating, contribute to the extremely high lanthanide binding capacity of the 1,2-HOPO nanoporous sorbent. At pH 4-5.9, the mass-weighted partition coefficients (Kd) for La, Nd, Eu, and Lu were 354,000, 344,000, 210,800, and 419,800, respectively. The rigid, open pore structure of the silica also allows for very rapid sorption. Being silica-based, the sorbent is compatible with vitrification processing into a final glasseous waste form, for subsequent disposition in a deep geological repository.


Assuntos
Cátions , Elementos da Série dos Lantanídeos/química , Nanotecnologia/métodos , Piridonas/farmacologia , Silício/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Ligantes , Modelos Químicos , Conformação Molecular , Piridonas/química
16.
J Colloid Interface Sci ; 284(1): 278-81, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15752814

RESUMO

We report here the self-assembly of surfactant molecules at the interface of air and the hygroscopic quaternary ammonium salt tetrabutylammonium acetate (TBAAc). Homogeneously dissolved surfactant molecules at 100 degrees C self-assemble upon contacting air due to high moisture adsorption by the organic salt when cooling down. Highly ordered lamellar phases with different lattice spacings have been observed when surfactants with various lengths of alkyl chains were used. C(n)TMAB/TBAAc systems showed all-trans conformation of interior methylene carbons and interdigited bilayers with an average CH2 increment of 0.119 nm, while C(n)NH2/TBAAc systems showed trans/gauche mixed conformations of interior methylene carbons and bilayers with an average CH2 increment of 0.247 nm. C(n)NH2s in C(n)NH2/TBAAc formed bilayers through water-mediated intermolecular hydrogen bonds with a water layer thickness of 0.51-0.61 nm. In C(n)TAB/TBAAc, as the head group of C(n)TAB is bigger, the interdigited bilayer thickness (d-spacing) is smaller, because the bigger head groups accommodate enough space for alkyl tails to come in between them.

17.
Chem Commun (Camb) ; (15): 1830-1, 2003 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-12931988

RESUMO

The beneficial effects that alkali metal and alkylammonium salt additions to molecularly templated silica sols have on the resulting mesoporous silica films formed from evaporative-coating methods with respect to porosity, elastic modulus, dielectric constant, and film surface uniformity were investigated and identified.


Assuntos
Compostos Orgânicos/química , Compostos Organometálicos/química , Dióxido de Silício/química , Oligoelementos/química , Sítios de Ligação , Eletroquímica/métodos , Modelos Químicos , Porosidade , Potássio/química , Compostos de Amônio Quaternário/química , Propriedades de Superfície
18.
Chem Commun (Camb) ; (13): 1374-5, 2002 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-12125562

RESUMO

The synthesis of carbamoylphosphonate silanes (CMPO analogs) designed for sequestering actinide cations in self-assembled monolayers on mesoporous supports (SAMMS) is described.


Assuntos
Elementos da Série Actinoide/química , Silanos/química , Silanos/síntese química , Elementos da Série Actinoide/metabolismo , Amidas/química , Ácidos Carboxílicos/química , Organofosfonatos/química , Trifluoretanol/química
19.
Chem Commun (Camb) ; (16): 2054-5, 2003 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-12934908

RESUMO

The beneficial effects humidity treatments have on molecularly templated mesoporous silica films with respect to elastic modulus, with minimal detrimental effects on porosity and dielectric constant, were identified.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25554735

RESUMO

Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA