Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(18): e2200165, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35373522

RESUMO

Diabetic wound healing remains challenging owing to the risk for bacterial infection, hypoxia, excessive glucose levels, and oxidative stress. Glucose-activated cascade reactions can consume glucose and eradicate bacteria, avoiding the direct use of hydrogen peroxide (H2 O2 ) and wound pH restriction on peroxidase-like activity. However, the anoxic microenvironment in diabetic wounds impedes the cascade reaction due to the oxygen (O2 ) dependence of glucose oxidation. Herein, defect-rich molybdenum disulfide nanosheets loaded with bovine serum albumin-modified gold nanoparticle (MoS2 @Au@BSA NSs) heterostructures are designed and anchored onto injectable hydrogels to promote diabetic wound healing through an O2 self-supplying cascade reaction. BSA decoration decreases the particle size of Au, increasing the activity of multiple enzymes. Glucose oxidase-like Au catalyzes the oxidation of glucose into gluconic acid and H2 O2 , which is transformed into a hydroxyl radical (•OH) catalyzed by peroxidase-like MoS2 @Au@BSA to eradicate bacteria. When the wound pH reaches an alkalescent condition, MoS2 @Au@BSA mimicks superoxide dismutase to transform superoxide anions into O2 and H2 O2 , and decomposes endogenous and exogenous H2 O2 into O2 via catalase-like mechanisms, reducing oxidative stress, alleviating hypoxia, and facilitating glucose oxidation. The MoS2 @Au@BSA nanozyme-anchored injectable hydrogel, composed of oxidized dextran and glycol chitosan crosslinked through a Schiff base, significantly accelerates diabetic wound healing.


Assuntos
Diabetes Mellitus , Nanopartículas Metálicas , Antioxidantes , Bactérias , Glucose , Ouro , Humanos , Hidrogéis , Hipóxia , Molibdênio , Oxigênio , Peroxidases , Cicatrização
2.
Biochem Biophys Res Commun ; 499(3): 482-487, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29596831

RESUMO

Breast cancer is a tremendous threat to humans in many countries, and thus we need to find safe and effective drugs for treatment. Ginsenoside Rh4 has been reported to be present in processed ginseng. However, few studies have focused on its anti-tumor activity. In this study, we investigated the inhibitory effects of ginsenoside Rh4 on MCF-7 breast cancer cells and the pathways that promote apoptosis in vitro. To study the effect of ginsenoside Rh4 in vivo, xenograft models were randomly divided into 3 groups (the control group, 10 mg/kg/d Rh4, 20 mg/kg/d Rh4, n = 10 per group), the ginsenoside Rh4 injection method was i.p. The results showed that ginsenoside Rh4 effectively inhibited proliferation, arrested the cell cycle in S phase and induced apoptosis in MCF-7 cells by flow cytometry. Morphological changes caused by ginsenoside Rh4-induced apoptosis were also observed by Hoechst 33342 staining. Western-blot analyses indicated that the apoptosis-inducing effects of ginsenoside Rh4 were associated with the external pathway by decreasing Bcl-2, increasing Bax, and activating caspase-8, -3 and PARP. Moreover, ginsenoside Rh4 significantly inhibited the growth of MCF-7 tumor cells in vivo. These results suggested that ginsenoside Rh4 could be a potentially effective anti-tumor drug for breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Ginsenosídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus
3.
J Ind Microbiol Biotechnol ; 45(12): 1045-1051, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30218234

RESUMO

As a potential feedstock for biofuel production, a high-cell-density continuous culture for the lipid production by Cryptococcus albidus was investigated in this study. The influences of dilution rates in the single-stage continuous cultures were explored first. To reach a high-cell-density culture, a single-stage continuous culture coupled with a membrane cell recycling system was carried out at a constant dilution rate of 0.36/h with varied bleeding ratios. The maximum lipid productivity of 0.69 g/L/h was achieved with the highest bleeding ratio of 0.4. To reach a better lipid yield and content, a two-stage continuous cultivation was performed by adjusting the C/N ratio in two different stages. Finally, a lipid yield of 0.32 g/g and lipid content of 56.4% were obtained. This two-stage continuous cultivation, which provided a higher lipid production performance, shows a great potential for an industrial-scale biotechnological production of microbial lipids and biofuel production.


Assuntos
Cryptococcus/metabolismo , Lipídeos/biossíntese , Biocombustíveis , Biomassa , Meios de Cultura/química , Microbiologia Industrial
4.
Tumour Biol ; 37(1): 979-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26264616

RESUMO

Papillary thyroid cancer (PTC) is a predominant type of thyroid cancer. Ionizing radiation is the only well-established risk factor and may result in double-strand breaks. The x-ray repair cross-complementing group 3 (XRCC3) gene plays a vital role in DNA repair through homologous recombination. We aimed at investigating the association between XRCC3 genetic polymorphisms and PTC susceptibility. Eighty-three PTC patients and 367 controls in a Chinese population were enrolled in the study. Tag single-nucleotide polymorphisms (SNPs) were identified by HaploView 4.2 software. Genomic DNAs were isolated from peripheral blood samples by using TaqMan Blood DNA kits. The genotyping of XRCC3 SNPs was performed by TaqMan SNPs genotyping assay. Odds ratios (ORs) and corresponding 95 % confidence intervals (CIs) were calculated to evaluate the association between XRCC3 SNPs and PTC susceptibility. The statistical analyses were conducted by using SPSS 13.0 software. Four tag-SNPs were initially identified by HaploView 4.2 software. Only one SNP (rs861539) was shown to be significantly associated with increased risk of PTC. There was a significant difference in smoking and drinking status between PTC cases and controls. And the stratified analysis suggested that the polymorphisms of rs861539 in XRCC3 were correlated with PTC risk in the four subgroups of smokers (ex-smokers included), non-smokers, drinkers (ex-drinkers included), and non-drinkers. The meta-analysis showed that only two studies reported a significant association between XRCC3 polymorphisms and PTC risk. In this study, we find a significant association between rs861539 polymorphisms and PTC susceptibility. However, there were inconsistent results in previous published studies. Therefore, further studies in a large population are required to gain insights into the PTC risk conferred by XRCC3 SNPs.


Assuntos
Povo Asiático/genética , Carcinoma/genética , Proteínas de Ligação a DNA/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Alelos , Carcinoma/patologia , Carcinoma Papilar , Estudos de Casos e Controles , China , Feminino , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Medição de Risco , Fatores de Risco , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/patologia
5.
BMC Cancer ; 15: 382, 2015 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-25956308

RESUMO

BACKGROUND: The false negative rate of sentinel lymph node biopsy (SLNB) is 5-10%, and results in improper patient management. The study was to assess the value of ultrasound-suspicious axillary lymph node biopsy (USALNB) in patients with early breast cancer, and to compare SLNB combined with USALNB (SLNB + USALNB) with SLNB alone. METHODS: From January 2010 to July 2013, 216 patients with early breast cancer were enrolled consecutively at the Department of Breast and Thyroid Surgery, Qianfoshan Hospital, Shandong University. All patients underwent wire localization of the suspicious node by color Doppler ultrasonography, followed by SLNB 2-3 hours later, suspicious node lymphadenectomy, and level ≥ II axillary dissection (as the gold standard). The predictive values of node status between SLNB + USALNB and SLNB alone were compared. RESULTS: The success rate of SLNB was 99.1% (214/216). After axillary dissection, 71 patients were confirmed with axillary lymph node metastases by pathological examinations. Eight false negatives were observed using SLNB alone, resulting in sensitivity of 88.7%, specificity of 100%, false negative rate of 11.3%, and false positive rate of 0% in predicting the axillary node status. SLNB + USALNB resulted in sensitivity of 97.2%, specificity of 100%, false negative rate of 2.8%, and false positive rate of 0%. The false negative rate of SLNB + USALNB was significantly different from that of SLNB alone (P = 0.031). CONCLUSIONS: SLNB + USALNB seems to be a low-risk procedure that might be useful in reducing the false negative rate of SLNB, improving the accuracy of axillary nodes evaluation in early breast cancer.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/secundário , Linfonodos/patologia , Adulto , Idoso , Axila , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Ductal de Mama/cirurgia , Estudos de Coortes , Diagnóstico Precoce , Reações Falso-Negativas , Feminino , Humanos , Excisão de Linfonodo , Linfonodos/diagnóstico por imagem , Metástase Linfática , Pessoa de Meia-Idade , Biópsia de Linfonodo Sentinela , Ultrassonografia
6.
Bioprocess Biosyst Eng ; 38(4): 691-700, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25332127

RESUMO

Volatile fatty acids (VFAs) that can be derived from food wastes were used for microbial lipid production by Chlorella protothecoides in heterotrophic cultures. The usage of VFAs as carbon sources for lipid accumulation was investigated in batch cultures. Culture medium, culture temperature, and nitrogen sources were explored for lipid production in the heterotrophic cultivation. The concentration and the ratio of VFAs exhibited significant influence on cell growth and lipid accumulation. The highest lipid yield coefficient and lipid content of C. protothecoides grown on VFAs were 0.187 g/g and 48.7%, respectively. The lipid content and fatty acids produced using VFAs as carbon sources were similar to those seen on growth and production using glucose. The techno-economic analysis indicates that the biodiesel derived from the lipids produced by heterotrophic C. protothecoides with VFAs as carbon sources is very promising and competitive with other biofuels and fossil fuels.


Assuntos
Carbono/química , Chlorella/metabolismo , Ácidos Graxos Voláteis/química , Lipídeos/biossíntese , Ácido Acético/química , Técnicas de Cultura Celular por Lotes , Biocombustíveis , Biomassa , Ácido Butírico/química , Meios de Cultura , Ácidos Graxos/química , Glucose/química , Processos Heterotróficos , Microbiologia Industrial , Nitrogênio/química , Propionatos/química
7.
Med Sci Monit ; 20: 2776-82, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25553984

RESUMO

BACKGROUND: Increased amounts of soluble E-cadherin (E-cad) have been found in the serum in various cancers, but the role of serum soluble E-cad in the prognosis of breast cancer patients has not been explored in Asian populations. MATERIAL/METHOD: Blood samples from 111 consecutive patients diagnosed with breast cancer and 55 healthy controls were investigated.Serum soluble E-cad expression levels were measured by enzyme-linked immunosorbent assay(ELISA) with an immunoassay kit according to the manufacturer's directions. Kaplan-Meier analyses were used to evaluate the association between serum soluble E-cad expression level and survival. All statistical tests were 2-sided. RESULTS: The serum levels of soluble E-cad in breast cancer patients were significantly higher than those of the control group (2218.9±319.6 ng/ml vs. 742.8±91.7 ng/ml, p<0.001). Serum levels of soluble E-cad correlated significantly with TNM stage (P=0.007), tumor grade (P=0.03), and lymph node metastasis (P<0.001). Kaplan-Meier analysis with the log-rank test indicated that high serum levels of soluble E-cad had a significant impact on overall survival (55.4% vs. 81.4%; P=0.032) and disease-free survival (36.8% vs. 67.8%; P=0.002) in breast cancer. Multivariate analysis revealed that serum levels of soluble E-cad were independently associated with overall survival and disease-free survival in breast cancer patients. CONCLUSIONS: Serum soluble E-cad level is an independent prognostic factor in Asian breast cancer patients.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Caderinas/sangue , Antígenos CD , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Curva ROC , Solubilidade
8.
Food Funct ; 15(18): 9037-9052, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150321

RESUMO

The occurrence and progression of mild cognitive impairment (MCI) are closely related to dysbiosis of the gut microbiota. Ginsenoside compound K (CK), a bioactive component of ginseng, has been shown to alleviate gut microbiota dysbiosis and neural damage. However, the mechanisms by which CK regulates the gut microbiota to improve MCI remain unexplored. In this study, an MCI mouse model induced by D-galactose was used, and 16S rRNA gene sequencing, metabolomics, transcriptomics, and integrative multi-omics analyses were employed to investigate the potential mechanisms by which CK alleviates MCI through modulation of the gut microbiota. The results demonstrated that CK repaired intestinal barrier dysfunction caused by MCI, improved blood-brain barrier (BBB) integrity, inhibited activation of microglial cells and astrocytes, and significantly ameliorated MCI. Furthermore, CK enhanced gut microbiota diversity, notably enriched beneficial bacteria such as Akkermansia, and modulated the levels of short-chain fatty acids (SCFAs), particularly increasing propionate, thereby alleviating gut microbiota dysbiosis caused by MCI. Germ-free experiments confirmed that gut microbiota is a key factor for ginsenoside CK in relieving MCI. Further investigation revealed that CK regulated the TLR4-MyD88-NF-κB signaling pathway through modulation of gut microbiota-mediated propionate metabolism, significantly reducing systemic inflammation and alleviating MCI. Our findings provide a new theoretical basis for using CK as a potential means of modulating the gut microbiota for the treatment of MCI.


Assuntos
Disfunção Cognitiva , Ácidos Graxos Voláteis , Galactose , Microbioma Gastrointestinal , Ginsenosídeos , Ginsenosídeos/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Camundongos , Masculino , Ácidos Graxos Voláteis/metabolismo , Camundongos Endogâmicos C57BL , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Modelos Animais de Doenças , Receptor 4 Toll-Like/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos
9.
Phytomedicine ; 124: 155287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176268

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a prevalent chronic liver disease that lacks an FDA-approved treatment medicine. Despite the known antitumor and hypoglycemic properties of Ginsenoside Rg5, its effects and underlying mechanisms in the context of NASH remain largely unexplored. PURPOSE: This study aims to investigate the effect of Rg5 on NASH mice induced by a high-fat diet and CCl4. STUDY DESIGN: In vivo experiments, a mouse NASH model was established by a HFHC diet plus intraperitoneal injection of low-dose CCl4. In vitro experiments, a cellular steatosis model was established using free fatty acids (FFA) induced HepG2 cells. In addition, a fibrogenesis model was established using HSC-LX2 cells. METHODS: The effects of Ginsenoside Rg5 on lipid accumulation and oxidative damage were analyzed by ELISA kit, H&E staining, Oil Red O staining, flow cytometry and Western blot. The effects of Ginsenoside Rg5 on liver fibrosis were analyzed by Masson staining, Sirus Red staining, immunohistochemistry and Western blot. The effect of Ginsenoside Rg5 on Notch1 signaling pathway in liver was studied by protein Oil Red staining, protein immunoblotting and immunofluorescence. RESULTS: In terms of lipid accumulation, Rg5 has the ability to regulate key proteins related to lipogenesis, thereby inhibiting hepatic lipid accumulation and oxidative stress. Additionally, Rg5 can reduce the occurrence of hepatocyte apoptosis by regulating the p53 protein. Moreover, after Rg5 intervention, the presence of fibrotic proteins (α-SMA, Collagen 1, TGF-ß) in the liver is significantly suppressed, thus inhibiting liver fibrosis. Lastly, Rg5 leads to a decrease in the expression levels of Notch1 and its ligand Jagged-1 in the liver. CONCLUSION: In summary, the regulatory effects of Rg5 on the Notch1 signaling pathway play a crucial role in modulating hepatic lipid metabolism and preventing hepatocyte apoptosis, thereby impeding the progression of NASH. These findings highlight the potential of Rg5 as a promising natural product for interventions targeting NASH.


Assuntos
Ginsenosídeos , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado , Cirrose Hepática/metabolismo , Transdução de Sinais , Células Hep G2 , Dieta Hiperlipídica/efeitos adversos , Apoptose , Lipídeos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
Phytomedicine ; 128: 155577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608488

RESUMO

BACKGROUND: Gastrointestinal mucositis stands as one of the most severe side effects of irinotecan (CPT-11). however, only palliative treatment is available at present. Therefore, there is an urgent need for adjunctive medications to alleviate the side effects of CPT-11. PURPOSE: In this study, our objective was to explore whether ginsenoside Rh4 could serve as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, thereby alleviating the side effects of CPT-11 and augmenting its anti-tumor efficacy. STUDY DESIGN: A CPT-11-induced gastrointestinal mucositis model was used to investigate whether ginsenoside Rh4 alleviated CPT-11-induced gastrointestinal mucositis and enhanced the anti-tumor activity of CPT-11. METHODS: In this study, we utilized CT26 cells to establish a xenograft tumor model, employing transcriptomics, genomics, and metabolomics techniques to investigate the impact of ginsenoside Rh4 on CPT-11-induced gastrointestinal mucositis and the effect on the anti-tumor activity of CPT-11. Furthermore, we explored the pivotal role of gut microbiota and their metabolites through fecal microbiota transplantation (FMT) experiments and supplementation of the key differential metabolite, hyodeoxycholic acid (HDCA). RESULTS: The results showed that ginsenoside Rh4 repaired the impairment of intestinal barrier function and restored intestinal mucosal homeostasis in a gut microbiota-dependent manner. Ginsenoside Rh4 treatment modulated gut microbiota diversity and upregulated the abundance of beneficial bacteria, especially Lactobacillus_reuteri and Akkermansia_muciniphila, which further regulated bile acid biosynthesis, significantly promoted the production of the beneficial secondary bile acid hyodeoxycholic acid (HDCA), thereby alleviating CPT-11-induced gut microbiota dysbiosis. Subsequently, ginsenoside Rh4 further alleviated gastrointestinal mucositis through the TGR5-TLR4-NF-κB signaling pathway. On the other hand, ginsenoside Rh4 combination therapy could further reduce the weight and volume of colon tumors, promote tumor cell apoptosis, and enhance the anti-tumor activity of CPT-11 by inhibiting the PI3K-Akt signaling pathway, thus exerting a synergistic anti-tumor effect. CONCLUSION: In summary, our findings confirm that ginsenoside Rh4 can alleviate CPT-11-induced gastrointestinal mucositis and enhance the anti-tumor activity of CPT-11 by modulating gut microbiota and its related metabolites. Our study validates the potential of ginsenoside Rh4 as a modulator of the gut microbiota and an adjunctive agent for chemotherapy, offering new therapeutic strategies for addressing chemotherapy side effects and improving chemotherapy efficacy.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Irinotecano , Mucosite , Ginsenosídeos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Irinotecano/farmacologia , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Transplante de Microbiota Fecal , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Antineoplásicos Fitogênicos/farmacologia
11.
Biotechnol Adv ; 72: 108347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527656

RESUMO

Mitigating greenhouse gas emissions is a critical challenge for promoting global sustainability. The utilization of CO2 and CH4 as substrates for the production of valuable products offers a promising avenue for establishing an eco-friendly economy. Biocatalysis, a sustainable process utilizing enzymes to facilitate biochemical reactions, plays a significant role in upcycling greenhouse gases. This review provides a comprehensive overview of the enzymes and associated reactions involved in the biocatalytic conversion of CO2 and CH4. Furthermore, the challenges facing the field are discussed, paving the way for future research directions focused on developing robust enzymes and systems for the efficient fixation of CO2 and CH4.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/metabolismo , Biocatálise , Gases de Efeito Estufa/análise , Metano/metabolismo
12.
J Adv Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969093

RESUMO

INTRODUCTION: Dysbiosis of the gut microbiota is emerging as a pivotal factor in the pathogenesis of colorectal cancer (CRC). Ginsenoside Rh4 (Rh4) is an active compound isolated from ginseng with beneficial effects in modulating intestinal inflammation and gut microbiota dysbiosis, but how Rh4 regulates the gut microbiota to alleviate CRC remains underexplored. OBJECTIVES: We investigated the impact of Rh4 on CRC and the mechanism of its action in inhibiting CRC via modulation of gut microbiota. METHODS: We used the AOM/DSS model and employed transcriptomics, genomics and metabolomics techniques to explore the inhibitory impact of Rh4 on CRC. Furthermore, we employed experiments involving antibiotic treatment and fecal microbiota transplantation (FMT) to investigate the role of the gut microbiota. Finally, we elucidated the pivotal role of key functional bacteria and metabolites regulated by Rh4 in CRC. RESULTS: Our research findings indicated that Rh4 repaired intestinal barrier damage caused by CRC, alleviated intestinal inflammation, and inhibited the development of CRC. Additionally, Rh4 inhibited CRC in a gut microbiota-dependent manner. Rh4 increased the diversity of gut microbiota, enriched the probiotic Akkermansia muciniphila (A. muciniphila), and alleviated gut microbiota dysbiosis caused by CRC. Subsequently, Rh4 regulated A. muciniphila-mediated bile acid metabolism. A. muciniphila promoted the production of UDCA by enhancing the activity of 7α-hydroxysteroid dehydrogenase (7α-HSDH). UDCA further activated FXR, modulated the TLR4-NF-κB signaling pathway, thus inhibiting the development of CRC. CONCLUSION: Our results confirm that Rh4 inhibits CRC in a gut microbiota-dependent manner by modulating gut microbiota-mediated bile acid metabolism and promoting the production of UDCA, which further activates the FXR receptor and regulates the TLR4-NF-κB signaling pathway. Our results confirm that Rh4 has the potential to be used as a modulator of gut microbiota for preventing and treatment of CRC.

13.
J Pharm Anal ; 14(2): 259-275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38464791

RESUMO

The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer (CRC). However, the effect of ginsenoside Rk3 (Rk3) on CRC and gut microbiota remains unclear. Therefore, the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation. Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors, repairs intestinal barrier damage, and regulates the gut microbiota imbalance caused by CRC, including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis, and clearance of pathogenic Desulfovibrio. Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids, particularly by upregulating glutamine, which has the potential to regulate the immune response. Furthermore, we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) signaling pathways, which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) signaling pathway. These results indicate that Rk3 modulates gut microbiota, regulates ILC3s immune response, and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors. More importantly, the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota. In summary, these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.

14.
J Agric Food Chem ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801678

RESUMO

In the development of biomaterials with specific structural domains associated with various cellular activities, the limited integrin specificity of commonly used adhesion sequences, such as the RGD tripeptide, has resulted in an inability to precisely control cellular responses. To overcome this limitation, we conducted multiple replications of the integrin α2ß1-specific ligand, the collagen hexapeptide Gly-Phe-Pro-Gly-Glu-Arg (GFPGER) in Pichia pastoris. This enabled the development of recombinant collagen with high biological activity, which was subsequently expressed, isolated, and purified for structural and functional analysis. The proteins carrying the multiple replications GFPGER sequence demonstrated significant bioactivity in cells, leading to enhanced cell adhesion, osteoblast differentiation, and mineralization when compared to control groups. Importantly, these effects were mediated by integrin α2ß1. The new collagen constructed in this study is expected to be a biomaterial for regulating specific cell functions and fates.

15.
J Agric Food Chem ; 72(17): 9867-9879, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602268

RESUMO

Dysbiosis of gut microbiota is believed to be associated with inflammatory bowel disease (IBD). Ginsenoside compound K (CK), the main metabolite of Panax ginseng ginsenoside, has proven effective as an anti-inflammatory agent in IBD. However, the mechanisms by which CK modulates gut microbiota to ameliorate IBD remain poorly understood. Herein, CK demonstrated the potential to suppress the release of proinflammatory cytokines by gut microbiota modulation. Notably, supplementation with CK promoted the restoration of a harmonious balance in gut microbiota, primarily by enhancing the populations of Lactobacillus and Akkermansia. Furthermore, CK considerably elevated the concentrations of tryptophan metabolites derived from Lactobacillus that could activate the aryl hydrocarbon receptor. Overall, the promising alleviative efficacy of CK primarily stemmed from the promotion of Lactobacillus growth and production of tryptophan metabolites, suggesting that CK should be regarded as a prospective prebiotic agent for IBD in the future.


Assuntos
Sulfato de Dextrana , Microbioma Gastrointestinal , Ginsenosídeos , Doenças Inflamatórias Intestinais , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico , Triptofano , Animais , Humanos , Masculino , Camundongos , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/administração & dosagem , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Panax/química , Panax/metabolismo , Panax/microbiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Triptofano/metabolismo
16.
Int J Biol Macromol ; 270(Pt 1): 131886, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677696

RESUMO

Type V collagen is an essential component of the extracellular matrix (ECM), and its remodeling releases specific protein fragments that can specifically inhibit endothelial cell responses such as proliferation, migration, and invasion. In this study, we have successfully constructed two engineered strains of Pichia pastoris capable of producing recombinant collagen through a new genetic engineering approach. Through high-density fermentation, the expression of 1605 protein and 1610 protein could reach 2.72 g/L and 4.36 g/L. With the increase of repetition times, the yield also increased. Bioactivity analysis showed that recombinant collagen could block the angiogenic effect of FGF-2 on endothelial cells by eliminating FGF-2-induced endothelial cell migration and invasion. Collectively, the recombinant proteins we successfully expressed have a wide range of potential for inhibiting angiogenesis in the biomaterials and biomedical fields.


Assuntos
Proteínas Recombinantes , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Humanos , Colágeno/química , Colágeno/farmacologia , Movimento Celular/efeitos dos fármacos , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Expressão Gênica , Fermentação , Saccharomycetales/genética , Saccharomycetales/metabolismo
17.
Food Chem Toxicol ; 186: 114587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461953

RESUMO

Hepatocellular carcinoma (HCC) is the third most lethal cancer in the world. Recent studies have shown that suppression of autophagy plays an important role in the development of HCC. Ginsenoside Rk1 is a protopanaxadiol saponin isolated from ginseng and has a significant anti-tumor effect, but its role and mechanism in HCC are still unclear. In this study, a mouse liver cancer model induced by diethylnitrosamine and carbon tetrachloride (DEN + CCl4) was employed to investigate the inhibitory effect of Rk1 on HCC. The results demonstrate that ginsenoside Rk1 effectively inhibits liver injury, liver fibrosis, and cirrhosis during HCC progression. Transcriptome data analysis of mouse liver tissue reveals that ginsenoside Rk1 significantly regulates the AMPK/mTOR signaling pathway, autophagy pathway, and apoptosis pathway. Subsequent studies show that ginsenoside Rk1 induces AMPK protein activation, upregulates the expression of autophagy marker LC3-II protein to promote autophagy, and then downregulates the expression of Bcl2 protein to trigger a caspase cascade reaction, activating AMPK/mTOR-induced toxic autophagy to promote cells death. Importantly, co-treatment of ginsenoside Rk1 with autophagy inhibitors can inhibit apoptosis of HCC cells, once again demonstrating the ability of ginsenoside Rk1 to promote autophagy-dependent apoptosis. In conclusion, our study demonstrates that ginsenoside Rk1 inhibits the development of primary HCC by activating toxic autophagy to promote apoptosis through the AMPK/mTOR pathway. These findings confirm that ginsenoside Rk1 is a promising new strategy for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Ginsenosídeos , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia
18.
Carbohydr Polym ; 314: 120899, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173039

RESUMO

Surgical excision, chemotherapy, and radiotherapy are the main approaches used for treating melanoma. Unfortunately, surgical excision usually inevitably causes large area skin defects. In addition, chemotherapy and radiotherapy are often accompanied by adverse reactions and multi-drug resistance. To overcome these limitations, a near-infrared (NIR)- and pH-responsive injectable nanocomposite hydrogel was developed using sodium alginate-graft-dopamine (SD) and biomimetic polydopamine-Fe(III)-doxorubicin nanoparticles (PFD NPs) for treating melanoma and promoting skin regeneration. Firstly, the SD/PFD hydrogel can precisely deliver anti-cancer agents to the tumor site to reduce its loss and off-target toxicity. Then, PFD can convert light into heat energy under NIR irradiation to kill cancer cells. Meanwhile, doxorubicin can be administered continuously and controllably by NIR- and pH-responsive. Additionally, the SD/PFD hydrogel can also relieve tumor hypoxia by decomposing endogenous hydrogen peroxide (H2O2) into oxygen (O2). Therefore, photothermal, chemotherapy, and nanozyme synergetic therapy resulted in the tumor suppression. Specifically, the SA-based hydrogel can kill bacteria, scavenge reactive oxygen species, promote the proliferation and migration of cells, and significantly accelerate skin regeneration. Therefore, this study provides a safe and effective strategy for melanoma treatment and wound repair.


Assuntos
Dopamina , Melanoma , Humanos , Nanogéis , Compostos Férricos , Peróxido de Hidrogênio , Melanoma/tratamento farmacológico , Doxorrubicina , Hidrogéis/farmacologia , Concentração de Íons de Hidrogênio
19.
J Agric Food Chem ; 71(24): 9370-9380, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37288986

RESUMO

Non-alcoholic steatohepatitis (NASH) has become the most important reason of liver disease around the world and is predisposed to further progression to cirrhosis and hepatocellular carcinoma. Ginsenoside Rk3 has been reported to have a plenty of biological activities, including anti-apoptotic, anti-anemia, and protective effects against acute kidney injury. However, whether ginsenoside Rk3 can improve NASH has not been reported yet. Therefore, the purpose of this study is to investigate the protective effect of ginsenoside Rk3 against NASH and its mechanism of action. C57BL/6 mice were treated with different dosages of ginsenoside Rk3 after being established as a NASH model. Our results showed that Rk3 administration significantly improved liver inflammation, lipid deposition, and fibrosis caused by a high-fat-high-cholesterol (HFHC) diet and CCl4 injection in mice. Notably, ginsenoside Rk3 was discovered significantly to inhibit the PI3K/AKT signaling pathway. Additionally, treatment with ginsenoside Rk3 remarkably amended the abundance of short-chain fatty acids. These changes were associated with beneficial variations to the variety and composition of the intestinal microbiota. In conclusion, ginsenoside Rk3 ameliorates hepatic non-alcoholic lipid inflammation and triggers changes in the beneficial intestinal flora, helping to reveal host-microbe interactions. The outcomes of this study indicate that ginsenoside Rk3 is a promising drug candidate for the treatment of NASH.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Inflamação/metabolismo , Lipídeos/farmacologia , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças
20.
Int J Biol Macromol ; 249: 125911, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37516228

RESUMO

Infected wounds are difficult to heal because they are vulnerable to bacterial attacks, inflammatory responses, and oxidative stress. To promote the healing of infected wounds, we developed an injectable dual-network hydrogel TFAEP (TA-Fe, APS, EPL-GMA, PVA) based on ε-poly-l-lysine-graft-glycidyl methacrylate (EPL-GMA), polyvinyl alcohol (PVA), and tannic acid-iron (TA-Fe). TA-Fe formed a stable redox pair, which acted as a dual-autocatalytic system to activate ammonium persulfate, generate free radicals, and subsequently induce EPL-GMA polymerization. Then PVA formed hydrogen bonds with TA molecules. Here, TA-Fe not only simulated peroxidase to convert H2O2 into hydroxyl radicals (OH), but also exhibited good near-infrared photothermal conversion efficiency, which all endowed the hydrogel with excellent antibacterial ability. In addition, the hydrogel could remove excessive reactive oxygen species and reactive nitrogen species, alleviating oxidative stress and reducing inflammation response due to the presence of TA molecules. Moreover, the hydrogel showed good injectability and tissue adhesion, ensuring the close adhesion of the hydrogel to the wound and achieving the maximum function. In vivo experiments demonstrated that the hydrogel promoted infected wound healing by accelerating epidermal regeneration, promoting angiogenesis and collagen deposition, and facilitating the expression of anti-inflammatory factors.


Assuntos
Hidrogéis , Peróxido de Hidrogênio , Hidrogéis/farmacologia , Lisina , Polimerização , Cicatrização , Antibacterianos/farmacologia , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA