Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nature ; 606(7912): 113-119, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585233

RESUMO

Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.


Assuntos
Avena , Grão Comestível , Genoma de Planta , Avena/genética , Diploide , Grão Comestível/genética , Genoma de Planta/genética , Mosaicismo , Melhoramento Vegetal , Tetraploidia
2.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931158

RESUMO

Conserving more than 7 million plant germplasm accessions in 1,750 genebanks worldwide raises the hope of securing the food supply for humanity for future generations. However, there is a genetic cost for such long-term germplasm conservation, which has been largely unaccounted for before. We investigated the extent and variation of deleterious and adaptive mutations in 490 individual plants representing barley, wheat, oat, soybean, maize, rapa, and sunflower collections in a seed genebank using RNA-Seq technology. These collections were found to have a range of deleterious mutations detected from 125 (maize) to 83,695 (oat) with a mean of 13,537 and of the averaged sample-wise mutation burden per deleterious locus from 0.069 to 0.357 with a mean of 0.200. Soybean and sunflower collections showed that accessions acquired earlier had increased mutation burdens. The germplasm with more years of storage in several collections carried more deleterious and fewer adaptive mutations. The samples with more cycles of germplasm regeneration revealed fewer deleterious and more adaptive mutations. These findings are significant for understanding mutational dynamics and genetic cost in conserved germplasm and have implications for long-term germplasm management and conservation.


Assuntos
Plantas , Sementes , Plantas/genética , Sementes/genética , Mutação
3.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892116

RESUMO

Long-term conservation of more than 7 million plant germplasm accessions in 1750 genebanks worldwide is a challenging mission. The extent of deleterious mutations present in conserved germplasm and the genetic risk associated with accumulative mutations are largely unknown. This study took advantage of published barley genomic data to predict sample-wise mutation burdens for 19,778 domesticated barley (Hordeum vulgare L.) accessions conserved ex situ. It was found that the conserved germplasm harbored 407 deleterious mutations and 337 (or 82%) identified deleterious alleles were present in 20 (or 0.1%) or fewer barley accessions. Analysis of the predicted mutation burdens revealed significant differences in mutation burden for several groups of barley germplasm (landrace > cultivar (or higher burden estimate in landrace than in cultivar); winter barley > spring barley; six-rowed barley > two-rowed barley; and 1000-accession core collection > non-core germplasm). Significant differences in burden estimate were also found among seven major geographical regions. The sample-wise predicted mutation burdens were positively correlated with the estimates of sample average pairwise genetic difference. These findings are significant for barley germplasm management and utilization and for a better understanding of the genetic risk in conserved plant germplasm.


Assuntos
Hordeum , Mutação , Hordeum/genética , Domesticação , Genoma de Planta , Alelos
4.
Proc Natl Acad Sci U S A ; 116(40): 20002-20008, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527251

RESUMO

Global warming has been documented to threaten wild plants with strong selection pressures, but how plant populations respond genetically to the threats remains poorly understood. We characterized the genetic responses of 10 wild emmer wheat (Triticum dicoccoides Koern.; WEW) populations in Israel, sampling them in 1980 and again in 2008, through an exome capture analysis. It was found that these WEW populations were under elevated selection, displayed reduced diversity and temporal divergence, and carried increased mutational burdens forward. However, some populations still showed the ability to acquire beneficial alleles via selection or de novo mutation for future adaptation. Grouping populations with mean annual rainfall and temperature revealed significant differences in most of the 14 genetic estimates in either sampling year or over the 28 y. The patterns of genetic response to rainfall and temperature varied and were complex. In general, temperature groups displayed more temporal differences in genetic response than rainfall groups. The highest temperature group had more deleterious single nucleotide polymorphisms (dSNPs), higher nucleotide diversity, fewer selective sweeps, lower differentiation, and lower mutational burden. The least rainfall group had more dSNPs, higher nucleotide diversity, lower differentiation and higher mutational burden. These characterized genetic responses are significant, allowing not only for better understanding of evolutionary changes in the threatened populations, but also for realistic modeling of plant population adaptability and vulnerability to global warming.


Assuntos
Biodiversidade , Análise Mutacional de DNA , Genes de Plantas , Aquecimento Global , Mutação , Triticum/genética , Alelos , Evolução Biológica , Clima , Exoma , Genética Populacional , Genômica , Israel , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Temperatura
5.
BMC Plant Biol ; 21(1): 446, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610811

RESUMO

BACKGROUND: Alfalfa (Medicago sativa L.) production decreases under salt stress. Identification of genes associated with salt tolerance in alfalfa is essential for the development of molecular markers used for breeding and genetic improvement. RESULT: An RNA-Seq technique was applied to identify the differentially expressed genes (DEGs) associated with salt stress in two alfalfa cultivars: salt tolerant 'Halo' and salt intolerant 'Vernal'. Leaf and root tissues were sampled for RNA extraction at 0 h, 3 h, and 27 h under 12 dS m- 1 salt stress maintained by NaCl. The sequencing generated a total of 381 million clean sequence reads and 84.8% were mapped on to the alfalfa reference genome. A total of 237 DEGs were identified in leaves and 295 DEGs in roots of the two alfalfa cultivars. In leaf tissue, the two cultivars had a similar number of DEGs at 3 h and 27 h of salt stress, with 31 and 49 DEGs for 'Halo', 34 and 50 for 'Vernal', respectively. In root tissue, 'Halo' maintained 55 and 56 DEGs at 3 h and 27 h, respectively, while the number of DEGs decreased from 42 to 10 for 'Vernal'. This differential expression pattern highlights different genetic responses of the two cultivars to salt stress at different time points. Interestingly, 28 (leaf) and 31 (root) salt responsive candidate genes were highly expressed in 'Halo' compared to 'Vernal' under salt stress, of which 13 candidate genes were common for leaf and root tissues. About 60% of DEGs were assigned to known gene ontology (GO) categories. The genes were involved in transmembrane protein function, photosynthesis, carbohydrate metabolism, defense against oxidative damage, cell wall modification and protection against lipid peroxidation. Ion binding was found to be a key molecular activity for salt tolerance in alfalfa under salt stress. CONCLUSION: The identified DEGs are significant for understanding the genetic basis of salt tolerance in alfalfa. The generated genomic information is useful for molecular marker development for alfalfa genetic improvement for salt tolerance.


Assuntos
Medicago sativa/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Medicago sativa/fisiologia , Estresse Salino/fisiologia , Tolerância ao Sal/fisiologia , Transcriptoma
6.
Environ Microbiol ; 20(4): 1498-1515, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411480

RESUMO

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease in Canada. The worldwide genetic structure of Pst populations have been characterized, excluding Canada. Here, we elucidated the genetic structure of the western Canadian Pst population using molecular markers, revealing the presence of four divergent lineages with predominantly clonal structure. In the worldwide context, two previously reported lineages were identified: PstS0 (22%), representing an old Northwestern-European and PstS1 (35%), an invasive warm-temperature adapted. Additionally, two new, unreported lineages, PstPr (9%) and PstS1-related (35%), were detected, which produced more telia than other lineages and had double the number of unique recombination events. The PstPr was a recent invasion, and likely evolved in a diverse, recombinant population as it was closely related to the PstS5, PstS7/Warrior, PstS8/Kranich, and PstS9 lineages originating from sexually recombining populations in the centre of diversity. The DNA methylation analysis revealed DNA-methyltransferase1-homologs, providing compelling evidence for epigenetic regulation and as a first report, an average of ∼5%, 5hmC in the Puccinia epigenome merits further investigation. The divergent lineages in the Canadian Pst population with the potential for genetic recombination, as well as epigenetic regulation needs consideration in the context of pathogen adaptation and management.


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , Metilação de DNA/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Canadá , Mapeamento Cromossômico , Epigênese Genética , Marcadores Genéticos/genética , Repetições de Microssatélites/genética
7.
Int J Mol Sci ; 19(9)2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30200310

RESUMO

Molecular characterization of unsequenced plant species with complex genomes is now possible by genotyping-by-sequencing (GBS) using recent next generation sequencing technologies. This study represents the first use of GBS application to sample genome-wide variants of crested wheatgrass [Agropyron cristatum (L.) Gaertn.] and assess the genetic diversity present in 192 genotypes from 12 tetraploid lines. Bioinformatic analysis identified 45,507 single nucleotide polymorphism (SNP) markers in this outcrossing grass species. The model-based Bayesian analysis revealed four major clusters of the samples assayed. The diversity analysis revealed 15.8% of SNP variation residing among the 12 lines, and 12.1% SNP variation present among four genetic clusters identified by the Bayesian analysis. The principal coordinates analysis and dendrogram were able to distinguish four lines of Asian origin from Canadian cultivars and breeding lines. These results serve as a valuable resource for understanding genetic variability, and will aid in the genetic improvement of this outcrossing polyploid grass species for forage production. These findings illustrate the potential of GBS application in the characterization of non-model polyploid plants with complex genomes.


Assuntos
Agropyron/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Técnicas de Genotipagem/métodos , Melhoramento Vegetal/métodos , Ploidias
8.
Mol Phylogenet Evol ; 101: 122-132, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27165939

RESUMO

A genome-wide detection of phylogenetic signals by next generation sequencing (NGS) has recently emerged as a promising genomic approach for phylogenetic analysis of non-model organisms. Here we explored the use of a multiplexed shotgun sequencing method to assess the phylogenetic relationships of 18 Linum samples representing 16 species within four botanical sections of the flax genus Linum. The whole genome DNAs of 18 Linum samples were fragmented, tagged, and sequenced using an Illumina MiSeq. Acquired sequencing reads per sample were further separated into chloroplast, mitochondrial and nuclear sequence reads. SNP calls upon genome-specific sequence data sets revealed 6143 chloroplast, 2673 mitochondrial, and 19,562 nuclear SNPs. Phylogenetic analyses based on three-genome SNP data sets with and without missing observations showed congruent three-genome phylogenetic signals for four botanical sections of the Linum genus. Specifically, two major lineages showing a separation of Linum-Dasylinum sections and Linastrum-Syllinum sections were confirmed. The Linum section displayed three major branches representing two major evolutionary stages leading to cultivated flax. Cultivated flax and its immediate progenitor were formed as its own branch, genetically more closely related to L. decumbens and L. grandiflorum with chromosome count of eight, and distantly apart from six other species with chromosome count of nine. Five species of the Linastrum and Syllinum sections were genetically more distant from cultivated flax, but they appeared to be more closely related to each other, even with variable chromosome counts. These findings not only provide the first evidence of congruent three-genome phylogenetic pathways within the Linum genus, but also demonstrate the utility of the multiplexed shotgun sequencing in acquisition of three-genome phylogenetic signals of non-model organisms.


Assuntos
Linho/genética , Genoma de Planta , Evolução Biológica , Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Linho/classificação , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mitocôndrias/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
9.
Theor Appl Genet ; 129(11): 2133-2149, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27522358

RESUMO

KEY MESSAGE: Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.


Assuntos
Avena/genética , Cromossomos de Plantas/genética , Genoma de Planta , Coloração Cromossômica , DNA de Plantas/genética , Marcadores Genéticos , Técnicas de Genotipagem , Haplótipos , Poliploidia
10.
Theor Appl Genet ; 128(11): 2131-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26246331

RESUMO

KEY MESSAGE: Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.


Assuntos
Produtos Agrícolas/genética , Variação Genética , Melhoramento Vegetal , Simulação por Computador , Heterozigoto , Modelos Genéticos , Seleção Genética
11.
Proc Natl Acad Sci U S A ; 109(9): 3412-5, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22334646

RESUMO

Climate change is a major environmental stress threatening biodiversity and human civilization. The best hope to secure staple food for humans and animal feed by future crop improvement depends on wild progenitors. We examined 10 wild emmer wheat (Triticum dicoccoides Koern.) populations and 10 wild barley (Hordeum spontaneum K. Koch) populations in Israel, sampling them in 1980 and again in 2008, and performed phenotypic and genotypic analyses on the collected samples. We witnessed the profound adaptive changes of these wild cereals in Israel over the last 28 y in flowering time and simple sequence repeat allelic turnover. The revealed evolutionary changes imply unrealized risks present in genetic resources for crop improvement and human food production.


Assuntos
Grão Comestível/genética , Aquecimento Global , Adaptação Fisiológica/genética , Evolução Biológica , DNA de Plantas/genética , Evolução Molecular , Genótipo , Hordeum/genética , Israel , Fenótipo , Sequências Repetitivas de Ácido Nucleico , Triticum/genética
12.
Plants (Basel) ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674463

RESUMO

Polycotyly, an interesting characteristic of seed-bearing dicotyledonous plants with more than two cotyledons, represents one of the least explored plant characters for utilization, even though cotyledon number was used to classify flowering plants in 1682. Gymnosperm and angiosperm species are generally known to have one or two cotyledons, but scattered reports exist on irregular cotyledon numbers in many plant species, and little is known about the extent of polycotyly in plant taxa. Here, we attempt to update the documentation of reports on polycotyly in plant species and highlight some lines of research for a better understanding of polycotyly. This effort revealed 342 angiosperm species of 237 genera in 80 (out of 416) families and 160 gymnosperm species of 26 genera in 6 (out of 12) families with reported or cited polycotyly. The most advanced research included the molecular-based inference of the phylogeny of flowering plants, showing a significant departure from the cotyledon-based classification of angiosperm plants, and the application of genetic cotyledon mutants as tools to clone and characterize the genes regulating cotyledon development. However, there were no reports on breeding lines with a 100% frequency of polycotyly. Research is needed to discover plant species with polycotyly and to explore the nature, development, genetics, evolution, and potential use of polycotyly.

13.
Plants (Basel) ; 12(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050102

RESUMO

Assessing genetic distinctness and redundancy is an important part of plant germplasm characterization. Over the last decade, such assessment has become more feasible and informative, thanks to the advances in genomic analysis. An attempt was made here to search for genebank germplasm with published genomic data and to assess their genetic distinctness and redundancy based on average pairwise dissimilarity (APD). The effort acquired 12 published genomic data sets from CIMMYT, IPK, USDA-ARS, IRRI, and ICRISAT genebanks. The characterized collections consisted of 661 to 55,879 accessions with up to 2.4 million genome-wide SNPs. The assessment generated an APD estimate for each sample. As a higher or lower APD is indicative of more genetic distinctness or redundance for an accession, respectively, these APD estimates helped to identify the most genetically distinct and redundant groups of 100 accessions each and a genetic outlier group with APD estimates larger than five standard deviations in each data set. An APD-based grouping of the conserved germplasm in each data set revealed among-group variances ranging from 1.5 to 53.4% across all data sets. Additional analyses showed that these APD estimations were more sensitive to SNP number, minor allele frequency, and missing data. Generally, 5000 to 10,000 genome-wide SNPs were required for an effective APD analysis. These findings together are encouraging and useful for germplasm management, utilization, and conservation, particularly in the genetic categorization of conserved germplasm.

14.
Plants (Basel) ; 12(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068560

RESUMO

A world collection of 132 yellow mustard (Sinapis alba L.) accessions was characterized in a greenhouse to identify germplasm with polycotyledony and to assess the genetic segregation of tricot and tetracot seedlings in selfed S1 and S2 generations. The effort identified a set of 46 yellow mustard accessions with frequent occurrences of polycotyledony. The revealed genetic segregations seemed to suggest the development of tricot and tetracot seedlings in yellow mustard was largely controlled by a combination of genes at multiple diallelic loci. The identified tricot germplasm can be used to facilitate the genetic and/or genomic analysis of polycotyledonous germplasm for a better understanding of genetic and developmental mechanisms conditioning polycotyledony and the development of yellow mustard lines for explorable tricot breeding.

15.
Genome ; 55(2): 93-104, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22272833

RESUMO

Many plant disease resistance (R) genes have been cloned, but the potential of utilizing these plant R-gene genomic resources for genetic inferences of plant domestication history remains unexplored. A population-based resequencing analysis of the genomic region near the Rrs2 scald resistance gene was made in 51 accessions of wild and cultivated barley from 41 countries. Fifteen primer pairs were designed to sample the genomic region with a total length of 10 406 bp. More nucleotide diversity was found in wild (π = 0.01846) than cultivated (π = 0.01507) barley samples. Three distinct groups of 29 haplotypes were detected for all 51 samples, and they were well mixed with wild and cultivated barley samples from different countries and regions. The neutrality tests by Tajima's D were not significant, but a significant (P < 0.05) case by Fu and Li's D* and F* was found in the barley cultivar samples. The estimate of selection intensity by K(a)/K(s) was 0.691 in wild barley and 0.580 in cultivated barley. The estimate of the minimum recombination events was 16 in wild barley and 19 in cultivated barley. A coalescence simulation revealed a bottleneck intensity of 1.5 to 2 since barley domestication. Together, the domestication signal in the genomic region was weak both in human selection and domestication bottleneck.


Assuntos
Resistência à Doença/genética , Variação Genética , Genética Populacional , Hordeum/genética , Modelos Genéticos , Filogenia , Seleção Genética , Sequência de Bases , Teorema de Bayes , Simulação por Computador , Primers do DNA/genética , Efeito Fundador , Haplótipos/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
16.
Plants (Basel) ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559636

RESUMO

Soybean (Glycine max (L.) Merr.) is one of the important crops in Canada and has the potential to expand its production further north into the Canadian Prairies. Such expansion, however, requires the search for adapted soybean germplasm useful for the development of productive cultivars with earlier maturity and increased protein concentration. We initiated several research activities to characterize 848 accessions of the soybean collection conserved at Plant Gene Resources of Canada (PGRC) for maturity, oil and protein concentration, and genetic distinctness. The characterization revealed a wide range of variations present in each assessed trait among the PGRC soybean accessions. The trait variabilities allowed for the identification of four core subsets of 35 PGRC soybean accessions, each specifically targeted for early maturity for growing in Saskatoon and Ottawa, and for high oil and protein concentration. The two early maturity core subsets for Saskatoon and Ottawa displayed days to maturity ranging from 103 to 126 days and 94 to 102 days, respectively. The two core subsets for high oil and protein concentration showed the highest oil and protein concentration from 25.0 to 22.7% and from 52.8 to 46.7%, respectively. However, these core subsets did not differ significantly in genetic distinctness (as measured with 19,898 SNP markers across 20 soybean chromosomes) from the whole PGRC soybean collection. These findings are useful, particularly for the management and utilization of the conserved soybean germplasm.

17.
Sci Rep ; 11(1): 15363, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321524

RESUMO

The Triticum (wheat)-Aegilops (goatgrass) complex has been extensively studied, but the evolutionary history of polyploid wheats has not been fully elucidated. The chloroplast (cp) with maternal inheritance and homoplasy can simplify the sequence-based evolutionary inferences, but informative inferences would require a complete and accurate cp genome sequence. In this study, 16 cp genomes representing five Aegilops and 11 Triticum species and subspecies were sequenced, assembled and annotated, yielding five novel circular cp genome sequences. Analyzing the assembled cp genomes revealed no marked differences in genome structure and gene arrangement across the assayed species. A polymorphism analysis of 72 published cp genome sequences representing 10 Aegilops and 15 Triticum species and subspecies detected 1183 SNPs and 1881 SSRs. More than 80% SNPs detected resided on the downstream and upstream gene regions and only 2.78% or less SNPs were predicted to be deleterious. The largest nucleotide diversity was observed in the short single-copy genomic region. Relatively weak selection pressure on cp coding genes was detected. Different phylogenetic analyses confirmed that the maternal divergence of the Triticum-Aegilops complex had three deep lineages each representing a diploid species with nuclear A, B, or D genome. Dating the maternal divergence yielded age estimates of divergence that matched well with those reported previously. The divergence between emmer and bread wheats occurred at 8200-11,200 years ago. These findings are useful for further genomic studies, provide insight into cp genome evolvability and allow for better understanding of the maternal divergence of the Triticum-Aegilops complex.


Assuntos
Aegilops/genética , Cloroplastos/genética , Genoma de Cloroplastos/genética , Triticum/genética , Evolução Molecular , Variação Genética/genética , Hibridização Genética , Herança Materna/genética , Filogenia , Poliploidia
18.
Plants (Basel) ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34451656

RESUMO

Genomic characterization is playing an increasing role in plant germplasm conservation and utilization, as it can provide higher resolution with genome-wide SNP markers than before to identify and analyze genetic variation. A genotyping-by-sequencing technique was applied to genotype 541 soybean accessions conserved at Plant Gene Resources of Canada and 30 soybean cultivars and breeding lines developed by the Ottawa soybean breeding program of Agriculture and Agri-Food Canada. The sequencing generated an average of 952,074 raw sequence reads per sample. SNP calling identified 43,891 SNPs across 20 soybean chromosomes and 69 scaffolds with variable levels of missing values. Based on 19,898 SNPs with up to 50% missing values, three distinct genetic groups were found in the assayed samples. These groups were a mixture of the samples that originated from different countries and the samples of known maturity groups. The samples that originated from Canada were clustered into all three distinct groups, but 30 Ottawa breeding lines fell into two groups only. Based on the average pairwise dissimilarity estimates, 40 samples with the most genetic distinctness were identified from three genetic groups with diverse sample origin and known maturity. Additionally, 40 samples with the highest genetic redundancy were detected and they consisted of different sample origins and maturity groups, largely from one genetic group. Moreover, some genetically duplicated samples were identified, but the overall level of genetic duplication was relatively low in the collection. These findings are useful for soybean germplasm management and utilization.

19.
J Plant Physiol ; 264: 153485, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34358945

RESUMO

Soil salinity is a global concern and often the primary factor contributing to land degradation, limiting crop growth and production. Alfalfa (Medicago sativa L.) is a low input high value forage legume with a wide adaptation. Examining the tissue-specific responses to salt stress will be important to understanding physiological changes of alfalfa. The responses of two alfalfa cultivars (salt tolerant 'Halo', salt intolerant 'Vernal') were studied for 12 weeks in five gradients of salt stress in a sand based hydroponic system in the greenhouse. The accumulation and localization of elements and organic compounds in different tissues of alfalfa under salt stress were evaluated using synchrotron beamlines. The pattern of chlorine accumulation for 'Halo' was: root > stem ~ leaf at 8 dSm-1, and root ~ leaf > stem at 12 dSm-1, potentially preventing toxic ion accumulation in leaf tissues. In contrast, for 'Vernal', it was leaf > stem ~ root at 8 dSm-1 and leaf > root ~ stem at 12 dSm-1. The distribution of chlorine in 'Halo' was relatively uniform in the leaf surface and vascular bundles of the stem. Amide concentration in the leaf and stem tissues was greater for 'Halo' than 'Vernal' at all salt gradients. This study determined that low ion accumulation in the shoot was a common strategy in salt tolerant alfalfa up to 8 dSm-1 of salt stress, which was then replaced by shoot tissue tolerance at 12 dSm-1.


Assuntos
Medicago sativa/metabolismo , Cálcio/análise , Cálcio/metabolismo , Cloro/análise , Cloro/metabolismo , Medicago sativa/química , Medicago sativa/fisiologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Caules de Planta/química , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Potássio/análise , Potássio/metabolismo , Estresse Salino , Tolerância ao Sal , Sódio/análise , Sódio/metabolismo
20.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856017

RESUMO

Barley (Hordeum vulgare L.) is one of the most important global crops. The six-row barley cultivar Morex reference genome has been used by the barley research community worldwide. However, this reference genome can have limitations when used for genomic and genetic diversity analysis studies, gene discovery, and marker development when working in two-row germplasm that is more common to Canadian barley. Here we assembled, for the first time, the genome sequence of a Canadian two-row malting barley, cultivar AAC Synergy. We applied deep Illumina paired-end reads, long mate-pair reads, PacBio sequences, 10X chromium linked read libraries, and chromosome conformation capture sequencing (Hi-C) to generate a contiguous assembly. The genome assembled from super-scaffolds had a size of 4.85 Gb, N50 of 2.32 Mb, and an estimated 93.9% of complete genes from a plant database (BUSCO, benchmarking universal single-copy orthologous genes). After removal of small scaffolds (< 300 Kb), the assembly was arranged into pseudomolecules of 4.14 Gb in size with seven chromosomes plus unanchored scaffolds. The completeness and annotation of the assembly were assessed by comparing it with the updated version of six-row Morex and recently released two-row Golden Promise genome assemblies.


Assuntos
Hordeum , Canadá , Cromossomos , Genoma , Genômica , Hordeum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA