Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Anal Chem ; 96(28): 11397-11403, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38940533

RESUMO

Low-mass soluble ß-amyloid peptide oligomers (LSAßOs) play a crucial role in the pathogenesis of Alzheimer's disease. However, these oligomers exhibit heterogeneity in terms of structure, stability, and stoichiometry, and their abundance in biofluids is low, making accurate identification challenging. In this study, we developed a DNA nanocage-assisted method for selective sizing and sensitive quantification of LSAßOs in serum. Using LSAßO less than 10 kDa (LSAßO10kD) and less than 30 kDa (LSAßO30kD) as models, the size-matching rules between DNA nanocages and LSAßOs were investigated, and two appropriate nanocages were selected for the detection of two LSAßOs, respectively. Both nanocages were functionalized by encapsulating oligomer's aptamer and a complementary sequence within their cavities. Once the LSAßO entered the corresponding nanocage cavity, the complementary sequence was released, triggering a hybridization chain reaction on an electrochemical sensing platform. The system achieved size-selective discrimination of LSAßO10kD with a linear range of 10-150 pM and LSAßO30kD with a linear range of 15-150 pM. Real sample testing confirmed the applicability of the method for blood-based diagnosis. The DNA nanocage-assisted electrochemical analysis platform provides an accurate, highly selective, and sensitive approach for oligomer analysis, which is significant for amyloid protein research and related disease diagnosis.


Assuntos
Peptídeos beta-Amiloides , DNA , Peptídeos beta-Amiloides/análise , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/química , DNA/química , Humanos , Nanoestruturas/química , Tamanho da Partícula , Técnicas Eletroquímicas/métodos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/sangue , Técnicas Biossensoriais/métodos , Solubilidade , Aptâmeros de Nucleotídeos/química , Peso Molecular
2.
Chemphyschem ; 20(22): 3154-3162, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30938896

RESUMO

In the present work we investigate the structure sensitivity of the oxygen evolution reaction (OER) combining electrochemistry, in situ spectroscopy and density functional theory calculations. The intrinsic difficulty of such studies is the fact that at electrode potentials where the OER is observed, the electrode material is highly oxidized. As a consequence, the surface structure during the reaction is in general ill-defined and only scarce knowledge exists concerning the structure-activity relationship of this important reaction. To alleviate these challenging conditions, we chose as starting point well-defined Pt single-crystal electrodes, which we exposed to well-defined conditioning before studying their OER rate. Using this approach, a potential region is identified where the OER on Pt is indeed structure-sensitive with Pt(100) being significantly more active than Pt(111). This experimental finding is in contrast to a DFT analysis of the adsorption strength of the reaction intermediates O*, OH*, and OOH* often used to plot the activity in a volcano curve. It is proposed that as a consequence of the highly oxidizing conditions, the structure-sensitive charge-transfer resistance through the interface determines the observed reaction rate.

3.
Chemphyschem ; 18(22): 3153-3162, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28872751

RESUMO

Room-temperature ionic liquids (RTILs) are promising new electrolytes for efficient carbon dioxide reduction. However, due to their high viscosity, the mass transport of CO2 in RTILs is typically slow, at least one order of magnitude slower than in aqueous systems. One possibility to improve mass transport in RTILs is to decrease their viscosity through dilution with water. Herein, defined amounts of water are added to 1-butyl-3methylimidazolium tetrafluoroborate ([BMIm][BF4 ]), which is a hydrophilic RTIL. Electrochemical measurements on quiescent and hydrodynamic systems both indicate enhanced CO2 electroreduction. This enhancement has its origin in thermodynamic/kinetic effects (the addition of water increases the availability of H+ , which is a reaction partner of CO2 electroreduction) and in an increased rate of transport due to lower viscosity. Electrochemically determined diffusion coefficients for CO2 in [BMIm][BF4 ]/water systems agree well with values determined by NMR spectroscopy.

4.
Angew Chem Int Ed Engl ; 56(42): 12883-12887, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28763143

RESUMO

Graphene is a promising candidate for an ideal membrane material. Its ultralow (one-atomic) thickness potentially provides high permeation and at the same time high selectivity. Here, it is shown that these properties can be used to create a confined, two-dimensional electrochemical environment between a graphene layer and a single-crystal Pt(111) surface. The well-defined fingerprint voltammetric characteristics of Pt(111) provide an immediate information about the penetration and intercalation of ions into the confined space. These processes are shown to be highly selective.

5.
J Am Chem Soc ; 137(13): 4469-76, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25781036

RESUMO

Experiments using a mechanically controlled break junction and calculations based on density functional theory demonstrate a new magic ratio rule (MRR) that captures the contribution of connectivity to the electrical conductance of graphene-like aromatic molecules. When one electrode is connected to a site i and the other is connected to a site i' of a particular molecule, we assign the molecule a "magic integer" Mii'. Two molecules with the same aromatic core but different pairs of electrode connection sites (i,i' and j,j', respectively) possess different magic integers Mii' and Mjj'. On the basis of connectivity alone, we predict that when the coupling to electrodes is weak and the Fermi energy of the electrodes lies close to the center of the HOMO-LUMO gap, the ratio of their conductances is equal to (Mii'/Mjj')(2). The MRR is exact for a tight-binding representation of a molecule and a qualitative guide for real molecules.

6.
Phys Chem Chem Phys ; 17(22): 14788-95, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25975779

RESUMO

A protected S-acetylthio porphyrin was synthesized and attached to the Au38(2-phenylethanethiolate)24 cluster in a ligand exchange reaction. Chiral high performance liquid chromatography of the functionalized cluster yielded enantiomeric pairs of clusters probably differing in the binding site of the porphyrin. As proven by circular dichroism, the chirality was maintained. Exciton coupling between the cluster and the chromophore is observed. Zinc can be incorporated into the porphyrin attached to the cluster, as evidenced by absorption and fluorescence spectroscopy, however, the reaction is slow. Quenching of the chromophore fluorescence is observed, which can be explained by energy transfer from the porphyrin to the cluster. Transient absorption spectra of Au38(2-phenylethanethiolate)24 and the functionalized cluster probe the bleach of the gold cluster due to ground state absorption and the characteristic excited state absorption signals. Zinc incorporation does not have a pronounced effect on the photophysical behaviour. Decay times are typical for the molecular behaviour of small monolayer protected gold clusters.

7.
Chimia (Aarau) ; 69(12): 769-776, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26842328

RESUMO

The electrochemical reduction of CO(2) has been extensively studied over the past decades. Nevertheless, this topic has been tackled so far only by using a very fundamental approach and mostly by trying to improve kinetics and selectivities toward specific products in half-cell configurations and liquid-based electrolytes. The main drawback of this approach is that, due to the low solubility of CO(2) in water, the maximum CO(2) reduction current which could be drawn falls in the range of 0.01-0.02 A cm(-2). This is at least an order of magnitude lower current density than the requirement to make CO(2)-electrolysis a technically and economically feasible option for transformation of CO(2) into chemical feedstock or fuel thereby closing the CO(2) cycle. This work attempts to give a short overview on the status of electrochemical CO(2) reduction with respect to challenges at the electrolysis cell as well as at the catalyst level. We will critically discuss possible pathways to increase both operating current density and conversion efficiency in order to close the gap with established energy conversion technologies.

8.
Angew Chem Int Ed Engl ; 54(46): 13586-9, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26403214

RESUMO

We studied charge transport through core-substituted naphthalenediimide (NDI) single-molecule junctions using the electrochemical STM-based break-junction technique in combination with DFT calculations. Conductance switching among three well-defined states was demonstrated by electrochemically controlling the redox state of the pendent diimide unit of the molecule in an ionic liquid. The electrical conductances of the dianion and neutral states differ by more than one order of magnitude. The potential-dependence of the charge-transport characteristics of the NDI molecules was confirmed by DFT calculations, which account for electrochemical double-layer effects on the conductance of the NDI junctions. This study suggests that integration of a pendant redox unit with strong coupling to a molecular backbone enables the tuning of charge transport through single-molecule devices by controlling their redox states.

9.
Angew Chem Int Ed Engl ; 54(48): 14304-7, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26444184

RESUMO

Tuning charge transport at the single-molecule level plays a crucial role in the construction of molecular electronic devices. Introduced herein is a promising and operationally simple approach to tune two distinct charge-transport pathways through a cruciform molecule. Upon in situ cleavage of triisopropylsilyl groups, complete conversion from one junction type to another is achieved with a conductance increase by more than one order of magnitude, and it is consistent with predictions from ab initio transport calculations. Although molecules are well known to conduct through different orbitals (either HOMO or LUMO), the present study represents the first experimental realization of switching between HOMO- and LUMO-dominated transport within the same molecule.

10.
Phys Chem Chem Phys ; 16(40): 22229-36, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25212846

RESUMO

A direct electron transfer process between bacterial cells of electrogenic species Geobacter sulfurreducens (Gs) and electrified electrode surfaces was studied to exploit the reactivity of Gs submonolayers on gold and silver surfaces. A submonolayer of Gs was prepared and studied to explore specifically the heterogeneous electron transfer properties at the bacteria/electrode interface. In situ microscopic techniques characterised the morphology of the Gs submonolayers under the operating conditions. In addition, complementary in situ spectroscopic techniques that allowed us to access in situ molecular information of the Gs with high surface selectivity and sensitivity were employed. The results provided clear evidence that the outermost cytochrome C in Gs is responsible for the heterogeneous electron transfer, which is in direct contact with the metal electrode. Feasibility of single cell in situ studies under operating conditions was demonstrated where the combination of surface-electrochemical tools at the nano- and micro-scale with microbiological approaches can offer unique opportunities for the emerging field of electro-microbiology to explore processes and interactions between microorganisms and electrical devices.


Assuntos
Técnicas Eletroquímicas , Geobacter/citologia , Ouro/química , Prata/química , Eletrodos , Eletrólitos/química , Transporte de Elétrons , Geobacter/química , Estrutura Molecular , Propriedades de Superfície
11.
J Hazard Mater ; 465: 133518, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38228001

RESUMO

Nanoplastics, widely existing in the environment and organisms, have been proven to cross the blood-brain barrier, increasing the incidence of neurodegenerative diseases like Alzheimer's disease (AD). However, current studies mainly focus on the neurotoxicity of nanoplastics themselves, neglecting their synergistic effects with other biomolecules and the resulting neurotoxicity. Amyloid ß peptide (Aß), which triggers neurotoxicity through its self-aggregation, is the paramount pathogenic protein in AD. Here, employing polystyrene nanoparticles (PS) as a model for nanoplastics, we reveal that 100 pM PS nanoparticles significantly accelerate the nucleation rate of two Aß subtypes (Aß40 and Aß42) at low concentrations, promoting the formation of more Aß oligomers and leading to evident neurotoxicity. The hydrophobic surface of PS facilitates the interaction of hydrophobic fragments between Aß monomers, responsible for the augmented neurotoxicity. This work provides consequential insights into the modulatory impact of low-dose PS on Aß aggregation and the ensuing neurotoxicity, presenting a valuable foundation for future research on the intricate interplay between environmental toxins and brain diseases.


Assuntos
Doença de Alzheimer , Nanopartículas , Humanos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Microplásticos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
12.
J Am Chem Soc ; 134(47): 19425-31, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23126569

RESUMO

A new and efficient approach using cleaving of trimethylsilyl groups to create covalent Au-C anchoring sites has been developed for single-molecule junction conductance measurements. Employing the mechanically controllable break junction (MCBJ) technique in liquid, we demonstrate the formation of highly conducting single molecular junctions of several OPE derivatives. The created junctions are mechanically stable and exhibit conductances around one order of magnitude higher than those of their dithiol analogues. Extended assembly and reaction times lead to oligomerization. Combined STM imaging and gap-mode Raman experiments provide structure evidence to support the formation of covalent Au-C contacts and further oligomerization.


Assuntos
Alcinos/química , Carbono/química , Éteres/química , Ouro/química , Compostos de Trimetilsilil/química , Alcinos/síntese química , Éteres/síntese química , Estrutura Molecular
13.
RSC Adv ; 12(14): 8792-8803, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424807

RESUMO

In this research, the core objective is to explore the effect of super-absorbent polymer material (poly(sodium acrylate)) on the heat storage performance of magnesium sulfate and to investigate the heat transfer behavior of 13X-zeolite, nano-aluminum oxide (nano-Al2O3) and poly(sodium acrylate) modified magnesium sulfate in a reactor. Finally it provides support for future material and reactor design. All characterizations and performance tests were done in the laboratory and a numerical simulation method was used to investigate the heat transfer behavior of the reactor. Through hydrothermal treatment, bulk MgSO4·6H2O was changed into nanoparticles (200-500 nm) when composited with poly(sodium acrylate), 13X-zeolite and nano-Al2O3. Among these materials, MgSO4·6H2O shows the highest activation energy (36.8 kJ mol-1) and the lowest energy density (325 kJ kg-1). The activation energy and heat storage energy density of nano-Al2O3 modified composite material MA-1 are 28.5 kJ mol-1 and 1305 kJ kg-1, respectively. Poly(sodium acrylate) modified composite material, MPSA-3, shows good heat storage energy density (1100 kJ kg-1) and the lowest activation energy (22.3 kJ mol-1) due its high water-absorbing rate and dispersing effect. 13X-zeolite modified composite material MZ-2 shows lower activation energy (32.4 kJ mol-1) and the highest heat storage density (1411 kJ kg-1), which is 4.3 times higher than that of pure magnesium sulfate hexahydrate. According to the heat transfer numerical simulation, hygroscopic additives could prominently change the temperature distribution in the reactor and efficiently release heat to the thermal load side. The experimental and numerical simulation temperatures are similar. This indicates that the result of the numerical simulation is very close to the actual heat transfer behavior. This reactor could output heat at around 50 °C and absorb heat in the range of 100-200 °C. All these results further prove the strategy that thermochemical nanomaterial synthesis technology combined with material-reactor heat transfer numerical simulation is feasible for future material and reactor design.

14.
J Am Chem Soc ; 133(19): 7332-5, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21520946

RESUMO

In situ gap-mode Raman spectra were acquired in an electrochemical environment on a single-crystal gold electrode employing a Au(100)|4,4'-biphenyldithiol (BPDT)|Au-NP(55 nm) sandwich assembly. This geometry enabled an investigation of the influence of an applied electrochemical gate field on the conformational changes in nanojunctions, such as the torsion angle (φ) of molecules. A linear correlation between the intensity ratio I(C═C)/I(C(ring)-S) and cos(2) φ in 4,4'-BPDT-type molecular junctions was established and subsequently utilized to estimate the potential dependence of the torsion angle of the "flexible" molecule M1 at different potentials. The latter decreases as the potential (charge) becomes more negative, resulting in better π-π coupling, which correlates with enhanced junction conductance. The demonstrated spectroelectrochemical strategy and the direct correlation of the spectroscopic results with (single) molecular conductance studies may guide the selection and elucidation of functional molecules for potential applications in novel nanodevices.

15.
J Am Chem Soc ; 132(23): 8152-7, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20499873

RESUMO

Fe electrodeposition on Au(111) and Au(100) in BMIBF(4) ionic liquid is found to form hitherto unreported shape-ordered nanoscale morphologies of pseudorods and pseudosquare rings, respectively, both composed of grains of 4-7 nm. The manner of growth of the square rings is a ring-on-ring structure with enlarging side length and slightly protruding four corners. The generality of the growth mechanism is verified by the formation of almost exactly the same shape-ordered Fe nanostructures on Pt, i.e., pseudorod structure on Pt(111) and pseudosquare rings Pt(100). These structures are explained within the framework of magnetostatic interactions of spontaneously magnetized grains under crystallographic constraint of the substrate surface, which result in an antiparallel arrangement in magnetization of the grains at pseudorods and magnetic flux closure at the pseudosquare rings. The closed magnetic flux further leads to magnetic field-enhanced growth at the four corners and the outer peripheries of the pseudosquare rings. The observed shape-ordering of the Fe thin film serves as a paradigm of magnetostatic coupling, in which the roles of ionic liquid as surfactant and magnetic media may not be underestimated. The present work adds a new dimension to electrodeposition in ionic liquid, by which new magnetic film structures may be expected.

16.
Chemphyschem ; 11(13): 2764-78, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20718064

RESUMO

The last decade has witnessed remarkable advances in interfacial electrochemistry in room-temperature ionic liquids. Although the wide electrochemical window of ionic liquids is of primary concern in this new type of solvent for electrochemistry, the unusual bulk and interfacial properties brought about by the intrinsic strong interactions in the ionic liquid system also substantially influence the structure and processes at electrode/ionic liquid interfaces. Theoretical modeling and experimental characterizations have been indispensable in reaching a microscopic understanding of electrode/ionic liquid interfaces and in elucidating the physics behind new phenomena in ionic liquids. This Minireview describes the status of some aspects of interfacial electrochemistry in ionic liquids. Emphasis is placed on high-resolution and molecular-level characterization by scanning tunneling microscopy and vibrational spectroscopies of interfacial structures, and the initial stage of metal electrodeposition with application in surface nanostructuring.


Assuntos
Líquidos Iônicos/química , Nanopartículas Metálicas/química , Metais/química , Adsorção , Eletroquímica , Eletrodos , Propriedades de Superfície
17.
J Am Chem Soc ; 131(41): 14728-37, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19778042

RESUMO

Neutral inorganic molecules are generally weak in surface adsorption and intermolecular interactions. Self-assembly of such types of molecule would provide valuable information about various interactions. At electrochemical interfaces, the relative strength of these interactions may be modified through control of electrode potential and electrolyte, which may lead to the discovery of new structures and new phenomena. However, studies of this nature are as yet lacking. In this work, we consider the covalent-bound semimetal compound molecules, XCl(3) (X = Sb, Bi), as model systems of neutral inorganic molecules to investigate their self-assembly at electrochemical interfaces under a high ionic atmosphere. To fulfill such investigations, in situ STM and cyclic voltammetry are employed, and comparative experiments are performed on Au(111) in ionic liquids as well as aqueous solutions with high ionic strength. In the room temperature ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF(4)), potential-dependent partial charge transfer between the Au surface and XCl(3) molecules creates a molecule-surface interaction and provides the driving force for adsorption of the molecules. Supramolecular aggregations of adsorbed XCl(3) are promoted through chlorine-based short-range intermolecular correlation under crystallographic constraint, while repulsive Coulombic interactions created between the partially charged aggregations facilitate their long-range ordering. For SbCl(3) molecules, hexagonally arranged 6- or 7-member clusters are formed at 0.08 to -0.2 V (vs Pt), which assemble into a secondary ( radical31 x radical31)R8.9 degrees structure. For BiCl(3) molecules, both the 6-membered hexagonal and 3-membered trigonal clusters are formed in the narrow potential range -0.3 to -0.35 V, and are also arranged into an ordered secondary structure. Comparative studies were performed with SbCl(3) in concentrated aqueous solutions containing 2 M HCl to simulate the strong ionic strength of the ionic liquid. Almost identical 6-/7-member clusters and long-range ( radical31 x radical31)R8.9 degrees structure are observed at -0.1 V, demonstrating the crucial role of strong ionic strength in such supramolecular aggregations. However, such supramolecular structures are modified and eventually destroyed as ionic strength is further increased by addition of NaClO(4) up to 6 M. The destructive changes of the supramolecular structures are attributed to the alteration of ion distribution in the double layer from cation-rich to anion-rich at increasing NaClO(4) concentration. This modifies and eventually breaks the balance of intermolecular and molecule-electrolyte interactions. Finally, the dynamic behavior of the SbCl(3) assembly is investigated down to molecular level. It has been demonstrated that the initial stage of assembly follows a two-dimensional nucleation and growth mechanism and has a potential-dependent rate that is closely related to the surface mobility of the SbCl(3) clusters. There is a probability that clusters can escape from an existing assembly domain or insert into a vacancy in such a domain while they can also relax with central or ring members in a dynamic fashion. These phenomena indirectly reflect the dynamic properties of cations from electrolytes at the interface. The rich information contained in the self-assembly behavior of SbCl(3) and BiCl(3) demonstrates that neutral inorganic molecules can be employed for fundamental studies of a variety of interesting issues, especially the interplay of various interfacial interactions.

18.
Angew Chem Int Ed Engl ; 48(28): 5148-51, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19526471

RESUMO

Ring any bells? The differential capacitance curve of Au(100) in neat [BMI]BF(4) (BMI = 1-butyl-3-methylimidazolium) ionic liquid has a bell-shaped feature (see picture). The adsorption of BMI(+) shows a disorder-order transition and depends on the structure of the surface. Ordered adsorption in a micelle-like structure stabilizes the underlying Au surface.


Assuntos
Ouro/química , Imidazóis/química , Líquidos Iônicos/química , Adsorção , Eletrodos , Micelas , Propriedades de Superfície
19.
Chem Sci ; 8(9): 6123-6130, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989642

RESUMO

As the field of unimolecular electronics develops, there is growing interest in the development of functionalised molecular wires, such as switches, which will allow for more complex molecular-scale circuits. To this end, a three redox state single molecule switch, 1, based on bis(pyrrolo)tetrathiafulvalene (BPTTF) has been designed, synthesised and investigated using scanning tunnelling microscopy break junction (STM-BJ) studies and quantum transport calculations. Oxidising the BPTTF unit increases its conjugation, which was anticipated to increase the molecular conductance of 1. By changing the redox state of 1 electrochemically it was possible to vary the single molecule conductance by more than an order of magnitude (from 10-5.2G0 to 10-3.8G0). Simulations afforded a qualitatively similar trend. An additional, higher conductance feature is present in most traces at junction sizes of around 2.0 nm - further extension affords the switchable lower conductance feature at junction sizes closer to the molecular length (ca. 3.0 nm). Analysis of the conductance traces shows that these two conductance features occur sequentially in nearly all junctions. This behaviour is attributed to an alternative initial junction conformation in which one or more of the BPTTF sulfur atoms acts as an anchoring group. This hypothesis is supported by a computational study of binding conformations and STM-BJ studies on a model compound, 2, with only one thiol anchor. Our results indicate that the redox properties of BPTTF make it an excellent candidate for use in single molecule switches.

20.
Chem Sci ; 8(11): 7464-7475, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29163899

RESUMO

Here we report a new family of cyclic antimicrobial peptides (CAMPs) targeting MDR strains of Pseudomonas aeruginosa. These CAMPs are cyclized via a xylene double thioether bridge connecting two cysteines placed at the ends of a linear amphiphilic alternating d,l-sequence composed of lysines and tryptophans. Investigations by transmission electron microscopy (TEM), dynamic light scattering and atomic force microscopy (AFM) suggest that these peptide macrocycles interact with the membrane to form lipid-peptide aggregates. Amphiphilic conformations compatible with membrane disruption are observed in high resolution X-ray crystal structures of fucosylated derivatives in complex with lectin LecB. The potential for optimization is highlighted by N-methylation of backbone amides leading to derivatives with similar antimicrobial activity but lower hemolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA