Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202401724, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691401

RESUMO

The dual emission (DE) characteristics of atomically precise copper nanoclusters (Cu NCs) are of significant theoretical and practical interest. Despite this, the underlying mechanism driving DE in Cu NCs remains elusive, primarily due to the complexities of excited state processes. Herein, a novel [Cu4(PPh3)4(C≡C-p-NH2C6H4)3]PF6 (Cu4) NC, shielded by alkynyl and exhibiting DE, was synthesized. Hydrostatic pressure was applied to Cu4, for the first time, to investigate the mechanism of DE. With increasing pressure, the higher-energy emission peak of Cu4 gradually disappeared, leaving the lower-energy emission peak as the dominant emission. Additionally, the Cu4 crystal exhibited notable piezochromism transitioning from cyan to orange. Angle-dispersive synchrotron X-ray diffraction results revealed that the reduced inter-cluster distances under pressure brought the peripheral ligands closer, leading to the formation of new C-H⋅⋅⋅N and N-H⋅⋅⋅N hydrogen bonds in Cu4. It is proposed that these strengthened hydrogen bond interactions limit the ligands' vibration, resulting in the vanishing of the higher-energy peak. In situ high-pressure Raman and vibrationally resolved emission spectra demonstrated that the benzene ring C=C stretching vibration is the structural source of the DE in Cu4.

2.
J Am Chem Soc ; 145(16): 8908-8916, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057869

RESUMO

Chiral perovskites have attracted considerable attention owing to their potential applications in spintronic- and polarization-based optoelectronic devices. However, the structural chirality/asymmetry transfer mechanism between chiral organic ammoniums and achiral inorganic frameworks is still equivocal, especially under extreme conditions, as the systematic structural differences between chiral and achiral perovskites have been rarely explored. Herein, we successfully synthesized a pair of new enantiomeric chiral perovskite (S/R-3PYEA)PbI4 (3PYEA2+ = C5NH5C2H4NH32+) and an achiral perovskite (rac-3PYEA)PbI4. Hydrostatic pressure was used, for the first time, to systematically investigate the differences in the structural evolution and optical behavior between (S/R-3PYEA)PbI4 and (rac-3PYEA)PbI4. At approximately 7.0 GPa, (S/R-3PYEA)PbI4 exhibits a chirality-dependent structural transformation with a bandgap "red jump" and dramatic piezochromism from translucent red to opaque black. Upon further compression, a previously unreported chirality-induced negative linear compressibility (NLC) is achieved in (S/R-3PYEA)PbI4. High-pressure structural characterizations and first-principles calculations demonstrate that pressure-driven homodirectional tilting of homochiral ammonium cations strengthens the interactions between S/R-3PYEA2+ and Pb-I frameworks, inducing the formation of new asymmetric hydrogen bonds N-H···I-Pb in (S/R-3PYEA)PbI4. The enhanced asymmetric H-bonding interactions further break the symmetry of (S/R-3PYEA)PbI4 and trigger a greater degree of in-plane and out-of-plane distortion of [PbI6]4- octahedra, which are responsible for chirality-dependent structural phase transition and NLC, respectively. Nevertheless, the balanced H-bonds incurred by equal proportions of S-3PYEA2+ and R-3PYEA2+ counteract the tilting force, leading to the absence of chirality-dependent structural transition, spectral "red jump", and NLC in (rac-3PYEA)PbI4.

3.
J Am Chem Soc ; 145(43): 23842-23848, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37859342

RESUMO

Organic-inorganic halide perovskites possess unique electronic configurations and high structural tunability, rendering them promising for photovoltaic and optoelectronic applications. Despite significant progress in optimizing the structural characteristics of the organic cations and inorganic framework, the role of organic-inorganic interactions in determining the structural and optical properties has long been underappreciated and remains unclear. Here, by employing pressure tuning, we realize continuous regulation of organic-inorganic interactions in a lead halide perovskite, MHyPbBr3 (MHy+ = methylhydrazinium, CH3NH2NH2+). Compression enhances the organic-inorganic interactions by strengthening the Pb-N coordinate bonding and N-H···Br hydrogen bonding, which results in a higher structural distortion in the inorganic framework. Consequently, the second-harmonic-generation (SHG) intensity experiences an 18-fold increase at 1.5 GPa, and the order-disorder phase transition temperature of MHyPbBr3 increases from 408 K under ambient pressure to 454 K at the industrially achievable level of 0.5 GPa. Further compression triggers a sudden non-centrosymmetric to centrosymmetric phase transition, accompanied by an anomalous bandgap increase by 0.44 eV, which stands as the largest boost in all known halide perovskites. Our findings shed light on the intricate correlations among organic-inorganic interactions, octahedral distortion, and SHG properties and, more broadly, provide valuable insights into structural design and property optimization through cation engineering of halide perovskites.

4.
Chem Rev ; 121(20): 12112-12180, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34251192

RESUMO

Oriented semiconductor nanostructures and thin films exhibit many advantageous properties, such as directional exciton transport, efficient charge transfer and separation, and optical anisotropy, and hence these nanostructures are highly promising for use in optoelectronics and photonics. The controlled growth of these structures can facilitate device integration to improve optoelectronic performance and benefit in-depth fundamental studies of the physical properties of these materials. Halide perovskites have emerged as a new family of promising and cost-effective semiconductor materials for next-generation high-power conversion efficiency photovoltaics and for versatile high-performance optoelectronics, such as light-emitting diodes, lasers, photodetectors, and high-energy radiation imaging and detectors. In this Review, we summarize the advances in the fabrication of halide perovskite nanostructures and thin films with controlled dimensionality and crystallographic orientation, along with their applications and performance characteristics in optoelectronics. We examine the growth methods, mechanisms, and fabrication strategies for several technologically relevant structures, including nanowires, nanoplates, nanostructure arrays, single-crystal thin films, and highly oriented thin films. We highlight and discuss the advantageous photophysical properties and remarkable performance characteristics of oriented nanostructures and thin films for optoelectronics. Finally, we survey the remaining challenges and provide a perspective regarding the opportunities for further progress in this field.

5.
Angew Chem Int Ed Engl ; 62(30): e202304515, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235527

RESUMO

Two-dimensional (2D) lead halide perovskites (LHPs) have shown great promises for light-emitting applications and excitonic devices. Fulfilling these promises demands an in-depth understanding on the relationships between the structural dynamics and exciton-phonon interactions that govern the optical properties. Here, we unveil the structural dynamics of 2D lead iodide perovskites with different spacer cations. Loose packing of an undersized spacer cation leads to out-of-plane octahedral tilting, whereas compact packing of an oversized spacer cation stretches Pb-I bond length, resulting in Pb2+ off-center displacement driven by stereochemical expression of the Pb2+ 6s2 lone pair electrons. Density functional theory calculations indicate that the Pb2+ cation is off-center displaced mainly along the direction where the octahedra are stretched the most by the spacer cation. We find dynamic structural distortions associated with either octahedral tilting or Pb2+ off-centering lead to a broad Raman central peak background and phonon softening, which increase the non-radiative recombination loss via exciton-phonon interactions and quench the photoluminescence intensity. The correlations between the structural, phonon, and optical properties are further confirmed by the pressure tuning of the 2D LHPs. Our results demonstrate that minimizing the dynamic structural distortions via a judicious selection of the spacer cations is essential to realize high luminescence properties in 2D LHPs.

6.
BMC Genomics ; 23(1): 120, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144543

RESUMO

BACKGROUND: Lentinula edodes (Berk.) is the second most productive mushroom in the world. It contains compounds effective for antiviral, antitumor, antioxidant and immune regulation. Although genomes have previously been reported for this species, a high-quality chromosome-level reference for L. edodes is unavailable. This hinders detailed investigation of population genetics, breeding history of strains and genes related to environmental stress responses. RESULTS: A high-quality chromosome-level genome was constructed. We separated a monokaryon from protoplasts of the commercial L. edodes strain L808 and assembled the genome of L. edodes using PacBio long-read and Illumina short-read sequencing, along with the high-throughput chromatin conformation capture (Hi-C) technique. We assembled a 45.87 Mb genome, and 99% of the sequences were anchored onto 10 chromosomes. The contig and scaffold N50 length were 2.17 and 4.94 Mb, respectively. Over 96% of the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) were identified, and 9853 protein-coding genes were predicted. We performed population genome resequencing using 34 wild strains and 65 commercial cultivars of L. edodes originating from China, Japan, the United States and Australia. Based on whole-genome variants, we showed substantial differences in the Chinese wild population, which divided into different branches according to the main areas of their geographical distribution. We also determined the breeding history of L. edodes at the molecular level, and demonstrated that the cultivated strains in China mainly originated from wild strains from China and Northeast Asia. Phenotypic analysis showed that 99 strains exhibited differences on the Cd accumulation. Three significant loci in the of L. edodes genome were identified using the genome-wide association study (GWAS) of Cd accumulation traits. Functional genes associated with Cd accumulation traits were related to DNA ligase and aminoacyl tRNA synthetase, indicating that DNA damage repair and in vivo protein translation may be responses to Cd stress. CONCLUSIONS: A high-quality chromosome-level genome and population genetic data of L. edodes provide genetic resources for functional genomic, evolutionary and artificial breeding studies for L. edodes.


Assuntos
Cogumelos Shiitake , Cádmio , Cromossomos , Genoma , Estudo de Associação Genômica Ampla , Cogumelos Shiitake/genética
7.
J Am Chem Soc ; 144(39): 18030-18042, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36134903

RESUMO

Two-dimensional (2D) metal halide perovskites are promising tunable semiconductors. Previous studies have focused on Pb-based structures, whereas the multilayered Sn- and Ge-based analogues are largely unexplored, even though they potentially exhibit more diverse structural chemistry and properties associated with the more polarizable ns2 lone-pair electrons. Herein, we report the synthesis and structures of 2D tin iodide perovskites (BA)2(A)Sn2I7, where BA = n-butylammonium and A = methylammonium, formamidinium, dimethylammonium, guanidinium, or acetamidinium, and those of 2D germanium iodide perovskites (BA)2(A)Ge2I7, where A = methylammonium or formamidinium. By comparing these structures along with their Pb counterparts, we establish correlations between the effect of group IV-cation's lone-pair stereochemical activity on the perovskite crystal structures and the resulting semiconducting properties such as bandgaps and carrier-phonon interactions and nonlinear optical properties. We find that the strength of carrier-phonon interaction increases with increasing lone-pair activity, leading to a more prominent photoluminescence tail on the low-energy side. Moreover, (BA)2(A)Ge2I7 exhibit strong second harmonic generation with second-order nonlinear coefficients of ∼10 pm V-1 that are at least 10 times those of Sn counterparts and 100 times those of Pb counterparts. We also report the third-order two-photon absorption coefficients of (BA)2(A)Sn2I7 to be ∼10 cm MW-1, which are one order of magnitude larger than those of the Pb counterparts and traditional inorganic semiconductors. These results not only highlight the role of lone-pair activity in linking the compositions and physical properties of 2D halide perovskites but also demonstrate 2D tin and germanium iodide perovskites as promising lead-free alternatives for nonlinear optoelectronic devices.

8.
J Am Chem Soc ; 144(27): 12247-12260, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767659

RESUMO

The electron-phonon (e-ph) interaction in lead halide perovskites (LHPs) plays a role in a variety of physical phenomena. Unveiling how the local lattice distortion responds to charge carriers is a critical step toward understanding the e-ph interaction in LHPs. Herein, we advance a fundamental understanding of the e-ph interaction in LHPs from the perspective of stereochemical activity of 6s2 lone-pair electrons on the Pb2+ cation. We demonstrate a model system based on three LHPs with distinctive lone-pair activities for studying the structure-property relationships. By tuning the A-cation chemistry, we synthesized single-crystal CsPbBr3, (MA0.13EA0.87)PbBr3 (MA+ = methylammonium; EA+ = ethylammonium), and (MHy)PbBr3 (MHy+ = methylhydrazinium), which exhibit stereo-inactive, dynamic stereo-active, and static stereo-active lone pairs, respectively. This gives rise to distinctive local lattice distortions and low-frequency vibrational modes. We find that the e-ph interaction leads to a blue shift of the band gap as temperature increases in the structure with the dynamic stereo-active lone pair but to a red shift in the structure with the static stereo-active lone pair. Furthermore, analyses of the temperature-dependent low-energy photoluminescence tails reveal that the strength of the e-ph interaction increases with increasing lone-pair activity, leading to a transition from a large polaron to a small polaron, which has significant influence on the emission spectra and charge carrier dynamics. Our results highlight the role of the lone-pair activity in controlling the band gap, phonon, and polaronic effect in LHPs and provide guidelines for optimizing the optoelectronic properties, especially for tin-based and germanium-based halide perovskites, where stereo-active lone pairs are more prominent than their lead counterparts.

9.
Arch Virol ; 167(11): 2223-2227, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35962823

RESUMO

Here, we report the characterization of a novel (-)ssRNA mycovirus isolated from Auricularia heimuer CCMJ1222, using a combination of RNA-seq, reverse transcription polymerase chain reaction, 5' and 3' rapid amplification of cDNA ends, and Sanger sequencing. Based on database searches, sequence alignment, and phylogenetic analysis, we designated the virus as "Auricularia heimuer negative-stranded RNA virus 1" (AhNsRV1). This virus has a monopartite RNA genome related to mymonaviruses (order Mononegavirales). The AhNsRV1 genome consists of 11,441 nucleotides and contains six open reading frames (ORFs). The largest ORF encodes a putative RNA-dependent RNA polymerase; the other ORFs encode hypothetical proteins with no conserved domains or known function. AhNsRV1 is the first (-)ssRNA virus and the third virus known to infect A. heimuer.


Assuntos
Micovírus , Vírus de RNA , Auricularia , DNA Complementar , Genoma Viral , Nucleotídeos , Fases de Leitura Aberta , Filogenia , RNA Fúngico , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
10.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014587

RESUMO

Ganoderma tsugae is well known as a medicinal mushroom in China and many Asian countries, while its fermentation technique and corresponding pharmacological activity are rarely reported. In this study, a wild G. tsugae strain (G42) with high triterpenoid content was screened from nine strains by rice solid-state fermentation, and 53.86 mg/g triterpenoids could be produced under optimized conditions; that is, inoculation amount 20%, fermentation temperature 27 °C, and culture time 45 days. The hepatoprotective activity of G42 ethanol extract was evaluated by CCl4-induced liver injury in mice, in which changes in the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), oxidation-related factors, and inflammatory cytokines in serum or liver samples demonstrated the therapeutic effect. In addition, the ethanol extract of G42 reduced the incidence of necrosis and inflammatory infiltration, and decreased protein expression levels of phosphor-nuclear factor-κB (NF-κB), interleukin-Iß (IL-1ß), and nuclear factor erythroid-2-related factor 2 (NRF2). The chemical composition of the ethanol extract was analyzed by high-resolution mass spectrometry and molecular networking. Three main triterpenoids, namely platycodigenin, cucurbitacin IIb, and ganolecidic acid B were identified. This work provided an optimized fermentation method for G. tsugae, and demonstrated that its fermentation extract might be developed as a functional food with a hepatoprotective effect.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ganoderma , Oryza , Triterpenos , Animais , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Etanol/metabolismo , Fermentação , Ganoderma/química , Fígado , Camundongos , Estresse Oxidativo , Triterpenos/metabolismo , Triterpenos/farmacologia
11.
J Am Chem Soc ; 143(1): 5-16, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33320656

RESUMO

Solvation plays a pivotal role in chemistry and biology. A solid-state analogy of solvation is polaron formation, but the magnitude of Coulomb screening is typically an order of magnitude weaker than that of solvation in aqueous solutions. Here, we describe a new class of polarons, the ferroelectric large polaron, proposed initially by Miyata and Zhu in 2018 (Miyata, K.; Zhu, X.-Y. Ferroelectric Large Polarons. Nat. Mater. 2018, 17 (5), 379-381). This type of polaron allows efficient Coulomb screening of an electron or hole by extended ordering of dipoles from symmetry-broken unit cells. The local ordering is reflected in the ferroelectric-like THz dielectric responses of lead halide perovskites (LHPs) and may be partially responsible for their exceptional optoelectronic performances. Despite the likely absence of long-range ferroelectricity in LHPs, a charge carrier may be localized to and/or induce the formation of nanoscale domain boundaries of locally ordered dipoles. Based on the known planar nature of energetically favorable domain boundaries in ferroelectric materials, we propose that a ferroelectric polaron localizes to planar boundaries of transient polar nanodomains. This proposal is supported by dynamic simulations showing sheet-like transient electron or hole wave functions in LHPs. Thus, the Belgian-waffle-shaped ferroelectric polaron in the three-dimensional LHP crystal structure is a large polaron in two dimensions and a small polaron in the perpendicular direction. The ferroelectric large polaron may form in other crystalline solids characterized by dynamic symmetry breaking and polar fluctuations. We suggest that the ability to form ferroelectric large polarons can be a general principle for the efficient screening of charge carriers from scattering with other charge carriers, with charged defects and with longitudinal optical phonons, thus contributing to enhanced optoelectronic properties.

12.
J Cardiovasc Pharmacol ; 78(5): e681-e689, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354001

RESUMO

ABSTRACT: Panax notoginseng saponins (PNS) are commonly used in the treatment of cardiovascular diseases. Whether PNS can protect myocardial ischemia-reperfusion injury by regulating the forkhead box O3a hypoxia-inducible factor-1 alpha (FOXO3a/HIF-1α) cell signaling pathway remains unclear. The purpose of this study was to investigate the protective effect of PNS on H9c2 cardiomyocytes through the FOXO3a/HIF-1α cell signaling pathway. Hypoxia and reoxygenation of H9C2 cells were used to mimic MIRI in vitro, and the cells were treated with PNS, 2-methoxyestradiol (2ME2), and LY294002." Cell proliferation, lactate dehydrogenase, and malonaldehyde were used to evaluate the degree of cell injury. The level of reactive oxygen species was detected with a fluorescence microscope. The apoptosis rate was detected by flow cytometry. The expression of autophagy-related proteins and apoptosis-related proteins was detected by western blot assay. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway. Furthermore, the protective effects of PNS were abolished by HIF-1α inhibitor 2ME2 and PI3K/Akt inhibitor LY294002. PNS could reduce H9c2 hypoxia-reoxygenation injury by promoting autophagy and inhibiting apoptosis through the HIF-1α/FOXO3a cell signaling pathway.


Assuntos
Fármacos Cardiovasculares/farmacologia , Proteína Forkhead Box O3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Panax notoginseng , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fármacos Cardiovasculares/isolamento & purificação , Linhagem Celular , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Panax notoginseng/química , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Saponinas/isolamento & purificação , Transdução de Sinais
13.
J Am Chem Soc ; 142(38): 16254-16264, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32845129

RESUMO

Understanding semiconductor surface properties and manipulating them chemically are critical for improving their performance in optoelectronic devices. Hybrid halide perovskites have emerged as an exciting class of highly efficient solar materials; however, their device performance could be limited by undesirable surface properties that impede carrier transport and induce recombination. Here we show that surface functionalization of methylammonium lead iodide (MAPbI3) perovskite with phenethylammonium iodide (PEAI), a commonly employed spacer cation in two-dimensional halide perovskites, can enhance carrier diffusion in the near-surface regions and reduce defect density by more than 1 order of magnitude. Using transient transmission and reflection microscopy, we selectively imaged the transport of the carriers near the (001) surface and in the bulk for single-crystal MAPbI3 microplates. The surface functionalization increases the diffusion coefficient of the carriers in the 40 nm subsurface region from ∼0.6 cm2 s-1 to ∼1.0 cm2 s-1, similar to the value for bulk carriers. These results suggest the PEA ligands are effective in reducing surface defect and phonon scattering and shed light on the mechanisms for enhancing photophysical properties and improving solar cell efficiency.

14.
J Am Chem Soc ; 142(8): 4008-4021, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32031788

RESUMO

The Goldschmidt tolerance factor in halide perovskites limits the number of cations that can enter their cages without destabilizing their overall structure. Here, we have explored the limits of this geometric factor and found that the ethylammonium (EA) cations which lie outside the tolerance factor range can still enter the cages of the 2D halide perovskites by stretching them. The new perovskites allow us to study how these large cations occupying the perovskite cages affect the structural, optical, and electronic properties. We report a series of cation engineered 2D Ruddlesden-Popper lead iodide perovskites (BA)2(EAxMA1-x)2Pb3I10 (x = 0-1, BA is n-butylammonium, MA is methylammonium) by the incorporation of a large EA cation in the cage. An analysis of the single-crystal structures reveals that the incorporation of EA in the cage significantly stretches Pb-I bonds, expands the cage, and induces a larger octahedral distortion in the inorganic framework. Spectroscopic and theoretical studies show that such structural deformation leads to a blue-shifted bandgap, sub-bandgap trap states with wider energetic distribution, and stronger photoluminescence quenching. These results enrich the family of 2D perovskites and provide new insights for understanding the structure-property relationship in perovskite materials.

15.
J Am Chem Soc ; 142(26): 11486-11496, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492336

RESUMO

Organic-inorganic hybrid halide perovskites are promising semiconductors with tailorable optical and electronic properties. The choice of A-site cation to support a three-dimensional (3D) perovskite structure AMX3 (where M is a metal and X is a halide) is limited by the geometric Goldschmidt tolerance factor. However, this geometric constraint can be relaxed in two-dimensional (2D) perovskites, providing us an opportunity to understand how various A-site cations modulate the structural properties and thereby the optoelectronic properties. Here, we report the synthesis and structures of single-crystal (BA)2(A)Pb2I7 where BA = butylammonium and A = methylammonium (MA), formamidinium (FA), dimethylammonium (DMA), or guanidinium (GA), with a series of A-site cations varying in size. Single-crystal X-ray diffraction reveals that the MA, FA, and GA structures crystallize in the same Cmcm space group, while the DMA imposes the Ccmb space group. We observe that as the A-site cation becomes larger, the Pb-I bond continuously elongates, expanding the volume of the perovskite cage, equivalent to exerting "negative pressure" on the perovskite structures. Optical studies and DFT calculations show that the Pb-I bond length elongation reduces the overlap of the Pb s- and I p-orbitals and increases the optical bandgap, while Pb-I-Pb tilting angles play a secondary role. Raman spectra show lattice softening with increasing size of the A-site cation. These structural changes with enlarged A cations result in significant decreases in photoluminescence intensity and lifetime, consistent with a more pronounced nonradiative decay. Transient absorption microscopy results suggest that the PL drop may derive from a higher concentration of traps or phonon-assisted nonradiative recombination. The results highlight that extending the range of Goldschmidt tolerance factors for 2D perovskites is achievable, enabling further tuning of the structure-property relationships in 2D perovskites.

16.
Angew Chem Int Ed Engl ; 59(40): 17533-17539, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32627251

RESUMO

A remarkable PL enhancement by 12 fold is achieved using pressure to modulate the structure of a recently developed 2D perovskite (HA)2 (GA)Pb2 I7 (HA=n-hexylammonium, GA=guanidinium). This structure features a previously unattainable, extremely large cage. In situ structural, spectroscopic, and theoretical analyses reveal that lattice compression under a mild pressure within 1.6 GPa considerably suppresses the carrier trapping, leading to significantly enhanced emission. Further pressurization induces a non-luminescent amorphous yellow phase, which is retained and exhibits a continuously increasing band gap during decompression. When the pressure is released to 1.5 GPa, emission can be triggered by above-band gap laser irradiation, accompanied by a color change from yellow to orange. The obtained orange phase could be retained at ambient conditions and exhibits two-fold higher PL emission compared with the pristine (HA)2 (GA)Pb2 I7 .

17.
J Cardiovasc Pharmacol ; 73(2): 92-99, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30531436

RESUMO

BACKGROUND AND OBJECTIVE: Panax Notoginseng Saponins (PNS) is a formula of Chinese medicine commonly used for treating ischemia myocardial in China. However, its mechanism of action is yet unclear. This study investigated the effect and the mechanism of PNS on myocardial ischemia-reperfusion injury (MIRI) through the hypoxia-inducible factor 1α (HIF-1α)/bcl-2/adenovirus E1B19kDa-interacting protein3 (BNIP3) pathway of autophagy. METHODS: We constructed a rat model of myocardial injury and compared among 4 groups (n = 10, each): the sham-operated group (Sham), the ischemia-reperfusion group (IR), the PNS low-dose group, and the PNS high-dose group were pretreated with PNS (30 and 60 mg/kg, respectively). Serum creatine kinase, malonaldehyde (MDA), lactate dehydrogenase, myocardial tissue superoxide dismutase, and reactive oxygen species were detected in rats with myocardial ischemia-reperfusion after the intervention of PNS. The rat myocardial tissue was examined using hematoxylin and eosin (H&E) staining, and the mitochondria of myocardial cells were observed using transmission electron microscopy. The expressions of microtubule-associated protein light chain 3 (LC3), HIF-1α, BNIP3, Beclin-1, and autophagy-related gene-5 (Atg5) in rat myocardial tissue were detected using Western blotting. RESULTS: The results showed that PNS was significantly protected against MIRI, as evidenced by the decreasing in the concentration of serum CK, MDA, lactate dehydrogenase, and myocardial tissue superoxide dismutase, reactive oxygen species, the attenuation of myocardial tissue histopathological changes and the mitochondrial damages of myocardial cells, and the increase of mitochondria autophagosome in myocardial cells. In addition, PNS significantly increased the expression of LC3 and the ratio of LC3II/LC3I in rat myocardial tissue. Moreover, PNS significantly increased the expression of HIF-1α, BNIP3, Atg5, and Beclin-1 in rat myocardial tissue. CONCLUSIONS: The protective effect of PNS on MIRI was mainly due to its ability to enhance the mitochondrial autophagy of myocardial tissue through the HIF-1α/BNIP3 pathway.


Assuntos
Autofagia/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Panax , Saponinas/farmacologia , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Fármacos Cardiovasculares/isolamento & purificação , Modelos Animais de Doenças , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Panax/química , Ratos Sprague-Dawley , Saponinas/isolamento & purificação , Transdução de Sinais
18.
Nano Lett ; 18(3): 1807-1813, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29397750

RESUMO

The facile chemical transformation of metal halide perovskites via ion exchange has been attributed to their "soft" crystal lattices that enable fast ion migration. Kinetic studies of such processes could provide mechanistic insights on the ion migration dynamics. Herein, by using aligned single-crystal nanowires of cesium lead bromide (CsPbBr3) perovskite on epitaxial substrates as platforms, we visualize and investigate the cation or anion interdiffusion kinetics via spatially resolved photoluminescence measurement on heterostructures fabricated by stacking CsPbCl3, MAPbI3, or MAPbBr3 microplates on top of CsPbBr3 nanowires. Time-dependent confocal photoluminescence microscopy and energy-dispersive X-ray spectroscopy showed the solid-state anion interdiffusion readily occurs to result in halide concentration gradients along CsPbBr3-3 xCl3 x ( x = 0-1) nanowires. Quantitative analysis of such composition profiles using Fick's law allowed us, for the first time, to extract interdiffusion coefficients of the chloride-bromide couple and an activation energy of 0.44 ± 0.02 eV for ion diffusion from temperature-dependent studies. In contrast, iodide-bromide interdiffusion is limited, likely due to the complex phase behaviors of mixed alloys of CsPb(Br,I)3. In contrast to the relatively mobile anions, A-site cation interdiffusion across the MAPbBr3/CsPbBr3 junctions was barely observed at room temperature. Our results present a general method to investigate the kinetics of the solid-state ion migration, and the gained insights on ion diffusion can provide guidelines for rationally designing perovskite heterostructures that could lead to new properties for fundamental studies and technological applications.

19.
J Am Chem Soc ; 140(46): 15675-15683, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30371066

RESUMO

Fabrication of heterostructures using two-dimensional (2D) materials with different bandgaps creates opportunities for exploring new properties and device applications. Ruddlesden-Popper (RP) layered halide perovskites have recently emerged as a new class of solution-processable 2D materials that demonstrate exotic optoelectronic properties. However, heterostructures using 2D halide perovskites have not been achieved. Here, we report a simple solution growth method for making vertically stacked double heterostructures and complex multilayer heterostructures of 2D lead iodide perovskites [(PEA)2(MA) n-1Pb nI3 n+1, PEA = C6H5(CH2)2NH3+, MA = CH3NH3+] via van der Waals epitaxy. These heterostructures present atomically sharp interfaces and display distinct photoluminescence that allow fingerprinting the RP phases. Time-resolved photoluminescence measurements reveal internal energy transfer from higher energy bandgap (lower n value) perovskite layers to lower energy bandgap (higher n value) perovskite layers on the time scale of hundreds of picoseconds due to natural type I band alignments. These results offer new strategies to fabricate perovskite-perovskite heterojunctions by taking advantage of surface-bound ligands as spatial barriers to prevent ion migration across the junctions. These heterostructures capable of multicolor emission with high spectral purity are promising for light-emitting applications.

20.
Nano Lett ; 17(1): 460-466, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28002671

RESUMO

With the intense interest in inorganic cesium lead halide perovskites and their nanostructures for optoelectronic applications, high-quality crystalline nanomaterials with controllable morphologies and growth directions are desirable. Here, we report a vapor-phase epitaxial growth of horizontal single-crystal CsPbX3 (X = Cl, Br, I) nanowires (NWs) and microwires (MWs) with controlled crystallographic orientations on the (001) plane of phlogopite and muscovite mica. Moreover, single NWs, Y-shaped branches, interconnected NW or MW networks with 6-fold symmetry, and, eventually, highly dense epitaxial network of CsPbBr3 with nearly continuous coverage were controllably obtained by varying the growth time. Detailed structural study revealed that the CsPbBr3 wires grow along the [001] directions and have the (100) facets exposed. The incommensurate heteroepitaxial lattice match between the CsPbBr3 and mica crystal structures and the growth mechanism of these horizontal wires due to asymmetric lattice mismatch were proposed. Furthermore, the photoluminescence waveguiding and good performance from the photodetector device fabricated with these CsPbBr3 networks demonstrated that these well-connected CsPbBr3 NWs could serve as straightforward platforms for fundamental studies and optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA