Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 556(7699): 103-107, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590091

RESUMO

A challenge in the treatment of Staphylococcus aureus infections is the high prevalence of methicillin-resistant S. aureus (MRSA) strains and the formation of non-growing, dormant 'persister' subpopulations that exhibit high levels of tolerance to antibiotics and have a role in chronic or recurrent infections. As conventional antibiotics are not effective in the treatment of infections caused by such bacteria, novel antibacterial therapeutics are urgently required. Here we used a Caenorhabditis elegans-MRSA infection screen to identify two synthetic retinoids, CD437 and CD1530, which kill both growing and persister MRSA cells by disrupting lipid bilayers. CD437 and CD1530 exhibit high killing rates, synergism with gentamicin, and a low probability of resistance selection. All-atom molecular dynamics simulations demonstrated that the ability of retinoids to penetrate and embed in lipid bilayers correlates with their bactericidal ability. An analogue of CD437 was found to retain anti-persister activity and show an improved cytotoxicity profile. Both CD437 and this analogue, alone or in combination with gentamicin, exhibit considerable efficacy in a mouse model of chronic MRSA infection. With further development and optimization, synthetic retinoids have the potential to become a new class of antimicrobials for the treatment of Gram-positive bacterial infections that are currently difficult to cure.


Assuntos
Antibacterianos/classificação , Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Retinoides/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Animais , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Benzoatos/química , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Benzoatos/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Humanos , Bicamadas Lipídicas/química , Staphylococcus aureus Resistente à Meticilina/citologia , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Mutação , Naftóis/química , Naftóis/farmacologia , Naftóis/uso terapêutico , Naftóis/toxicidade , Retinoides/química , Retinoides/uso terapêutico , Retinoides/toxicidade
2.
Infect Immun ; 91(1): e0037822, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602381

RESUMO

Recent studies have found that the coexistence of fungi and bacteria in the airway may increase the risk of infection, contribute to the development of pneumonia, and increase the severity of disease. Interleukin 17A (IL-17A) plays important roles in host resistance to bacterial and fungal infections. The objective of this study was to determine the effects of IL-17A on Acinetobacter baumannii-infected rats with a previous Candida albicans airway inoculation. The incidence of A. baumannii pneumonia was higher in rats with C. albicans in the airway than in noninoculated rats, and it decreased when amphotericin B was used to clear C. albicans, which influenced IL-17A levels. IL-17A had a protective effect in A. baumannii pneumonia associated with C. albicans in the airway. Compared with A. baumannii-infected rats with C. albicans in the airway that did not receive IL-17A, recombinant IL-17A (rIL-17A) supplementation decreased the incidence of A. baumannii pneumonia (10/15 versus 5/17; P = 0.013) and the proportion of neutrophils in the lung (84 ± 3.5 versus 74 ± 4.3%; P = 0.033), reduced tissue destruction and inflammation, and decreased levels of myeloperoxidase (MPO) (1.267 ± 0.15 versus 0.233 ± 0.06 U/g; P = 0.0004), reactive oxygen species (ROS) (132,333 ± 7,505 versus 64,667 ± 10,115 AU; P = 0.0007) and lactate dehydrogenase (LDH) (2.736 ± 0.05 versus 2.1816 ± 0.29 U/g; P = 0.0313). In vitro experiments revealed that IL-17A had no significant effect on the direct migration ability and bactericidal capability of neutrophils. However, IL-17A restrained lysis cell death and increased apoptosis of neutrophils (2.9 ± 1.14 versus 7 ± 0.5%; P = 0.0048). Taken together, our results suggest that C. albicans can depress IL-17A levels, which when supplemented may have a regulatory function that limits the accumulation of neutrophils in inflammatory areas, providing inflammatory response homeostasis.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Pneumonia Bacteriana , Pneumonia , Ratos , Animais , Candida albicans/metabolismo , Interleucina-17/metabolismo , Acinetobacter baumannii/metabolismo , Pulmão/metabolismo , Neutrófilos/metabolismo , Bactérias/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(33): 16529-16534, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358625

RESUMO

Treatment of Staphylococcus aureus infections is complicated by the development of antibiotic tolerance, a consequence of the ability of S. aureus to enter into a nongrowing, dormant state in which the organisms are referred to as persisters. We report that the clinically approved anthelmintic agent bithionol kills methicillin-resistant S. aureus (MRSA) persister cells, which correlates with its ability to disrupt the integrity of Gram-positive bacterial membranes. Critically, bithionol exhibits significant selectivity for bacterial compared with mammalian cell membranes. All-atom molecular dynamics (MD) simulations demonstrate that the selectivity of bithionol for bacterial membranes correlates with its ability to penetrate and embed in bacterial-mimic lipid bilayers, but not in cholesterol-rich mammalian-mimic lipid bilayers. In addition to causing rapid membrane permeabilization, the insertion of bithionol increases membrane fluidity. By using bithionol and nTZDpa (another membrane-active antimicrobial agent), as well as analogs of these compounds, we show that the activity of membrane-active compounds against MRSA persisters positively correlates with their ability to increase membrane fluidity, thereby establishing an accurate biophysical indicator for estimating antipersister potency. Finally, we demonstrate that, in combination with gentamicin, bithionol effectively reduces bacterial burdens in a mouse model of chronic deep-seated MRSA infection. This work highlights the potential repurposing of bithionol as an antipersister therapeutic agent.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Bitionol/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colesterol/química , Modelos Animais de Doenças , Sinergismo Farmacológico , Gentamicinas/farmacologia , Bicamadas Lipídicas/química , Fluidez de Membrana/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/ultraestrutura , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Relação Estrutura-Atividade , Lipossomas Unilamelares
4.
Cell Microbiol ; 22(10): e13234, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32543022

RESUMO

Cutibacterium acnes is capable of inducing inflammation in acne and can lead to a chronic prostatic infection. The diverse pathogenicity among different strains of C. acnes has been presented, but simple appropriate animal models for the evaluation of this bacterium are lacking. In this study, the nematode Caenorhabditis elegans was used as an invertebrate infection model. We revealed that C. acnes type strain ATCC 6919 caused lethal infections to C. elegans in solid and liquid culture media (p < .0001). Compared with the strain ATCC 6919, the antibiotic-resistant strain HM-513 was more virulent, resulting in reduced survival (p < .0001). Four different C. acnes strains killed worms with a p value of less than .0001 when provided to C. elegans at 4.8 × 108 CFU/ml. The infection model was also employed to explore host defence responses. An increase in numerous immune effectors in response to C. acnes was detected. We focused on nine C-type lectins, including: clec-13, clec-17, clec-47, clec-52, clec-60, clec-61, clec-70, clec-71 and clec-227. The induced expression of these C-type lectin genes was down-regulated in mutant worms deficient in the p38 mitogen-activated protein kinase (MAPK) pathway. Meanwhile, PMK-1 (MAPK) was phosphorylated and activated at the onset of C. acnes infection. By monitoring the survival of mutant worms, we found that PMK-1, SEK-1 (MAPKK) and TIR-1 (MAPKKK) were critical in responding to C. acnes infection. C. elegans pmk-1 and tir-1 mutants exhibited higher mortality to C. acnes infection (p < .0001). In conclusion, C. elegans serves as a simple and valuable model to study C. acnes virulence and facilitates improvements in understanding of host innate immune responses.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Lectinas Tipo C/metabolismo , Sistema de Sinalização das MAP Quinases , Propionibacteriaceae/patogenicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/genética , Regulação para Baixo , Imunidade Inata , Lectinas Tipo C/genética , MAP Quinase Quinase 4/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-32253208

RESUMO

Probiotics might provide an alternative approach for the control of oral candidiasis. However, studies on the antifungal activity of probiotics in the oral cavity are based on the consumption of yogurt or other dietary products, and it is necessary to use appropriate biomaterials and specific strains to obtain probiotic formulations targeted for local oral administration. In this study, we impregnated gellan gum, a natural biopolymer used as a food additive, with a probiotic and investigated its antifungal activity against Candida albicansLactobacillus paracasei 28.4, a strain recently isolated from the oral cavity of a caries-free individual, was incorporated in several concentrations of gellan gum (0.6% to 1% [wt/vol]). All tested concentrations could incorporate L. paracasei cells while maintaining bacterial viability. Probiotic-gellan gum formulations were stable for 7 days when stored at room temperature or 4°C. Long-term storage of bacterium-impregnated gellan gum was achieved when L. paracasei 28.4 was lyophilized. The probiotic-gellan gum formulations provided a release of L. paracasei cells over 24 h that was sufficient to inhibit the growth of C. albicans, with effects dependent on the cell concentrations incorporated into gellan gum. The probiotic-gellan gum formulations also had inhibitory activity against Candida sp. biofilms by reducing the number of Candida sp. cells (P < 0.0001), decreasing the total biomass (P = 0.0003), and impairing hyphae formation (P = 0.0002), compared to the control group which received no treatment. Interestingly, a probiotic formulation of 1% (wt/vol) gellan gum provided an oral colonization of L. paracasei in mice with approximately 6 log CFU/ml after 10 days. This formulation inhibited C. albicans growth (P < 0.0001), prevented the development of candidiasis lesions (P = 0.0013), and suppressed inflammation (P = 0.0006) compared to the mice not treated in the microscopic analysis of the tongue dorsum. These results indicate that gellan gum is a promising biomaterial and can be used as a carrier system to promote oral colonization for probiotics that prevent oral candidiasis.


Assuntos
Candidíase Bucal , Lacticaseibacillus paracasei , Probióticos , Animais , Camundongos , Polissacarídeos Bacterianos
6.
Microb Pathog ; 117: 80-87, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29432910

RESUMO

The objective of this study was to evaluate the influence of microbe-microbe interactions to identify a strain of Lactobacillus that could reduce the filamentation of Candida albicans ATCC 18804 using in vitro and in vivo models. Thus presenting a probiotic effect against the fungal pathogen. First, we analyzed the ability of 25 clinical isolates of Lactobacillus to reduce filamentation in C. albicans in vitro. We found that L. paracasei isolate 28.4 exhibited the greatest reduction of C. albicans hyphae (p = 0.0109). This reduction was confirmed by scanning electron microscopy analysis. The influence of C. albicans filamentation was found to be contributed through reduced gene expression of filament associated genes (TEC1 and UME6). In an in vivo study, prophylactic provisions with L. paracasei increased the survival of Caenorhabditis elegans worms infected with C. albicans (p = 0.0001) by 29%. Prolonged survival was accompanied by the prevention of cuticle rupture of 27% of the worms by filamentation of C. albicans, a phenotype that is characteristic of C. albicans killing of nematodes, compared to the control group. Lactobacillus paracasei isolate 28.4 reduced the filamentation of C. albicans in vitro by negatively regulating the TEC1 and UME6 genes that are essential for the production of hyphae. Prophylactic provision of Lactobacillus paracasei 28.4 protected C. elegans against candidiasis in vivo. L. paracasei 28.4 has the potential to be employed as an alternative method to control candidiasis.


Assuntos
Caenorhabditis elegans/microbiologia , Candida albicans/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Lacticaseibacillus paracasei/fisiologia , Modelos Teóricos , Animais , Antibiose , Candida albicans/genética , Candidíase/microbiologia , Candidíase/prevenção & controle , Candidíase/terapia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Hifas/citologia , Lacticaseibacillus paracasei/isolamento & purificação , Interações Microbianas , Probióticos , Proteínas Repressoras/genética , Fatores de Transcrição/genética
7.
Biofouling ; 34(2): 212-225, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29380647

RESUMO

This study isolated Lactobacillus strains from caries-free subjects and evaluated the inhibitory effects directly on three strains of C. albicans, two clinical strains and one reference strain. Thirty Lactobacillus strains were isolated and evaluated for antimicrobial activity against in vitro C. albicans biofilms. L. paracasei 28.4, L. rhamnosus 5.2 and L. fermentum 20.4 isolates exhibited the most significant inhibitory activity against C. albicans. Co-incubation between these microorganisms resulted in deterrence of biofilm development and retardation of hyphal formation. The hindrance of biofilm development was characterized by the downregulated expression of C. albicans biofilm-specific genes (ALS3, HWP1, EFG1 and CPH1). L. paracasei 28.4, L. rhamnosus 5.2 and L. fermentum 20.4 demonstrated the ability to exert antifungal activity through the inhibition of C. albicans biofilms.


Assuntos
Antibiose , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase Bucal/prevenção & controle , Lactobacillus/fisiologia , Probióticos/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Candida albicans/fisiologia , Humanos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento
8.
Artigo em Inglês | MEDLINE | ID: mdl-28483966

RESUMO

The increasing prevalence of antibiotic resistance has created an urgent need for alternative drugs with new mechanisms of action. Antimicrobial peptides (AMPs) are promising candidates that could address the spread of multidrug-resistant bacteria, either alone or in combination with conventional antibiotics. We studied the antimicrobial efficacy and bactericidal mechanism of cecropin A2, a 36-residue α-helical cationic peptide derived from Aedes aegypti cecropin A, focusing on the common pathogen Pseudomonas aeruginosa The peptide showed little hemolytic activity and toxicity toward mammalian cells, and the MICs against most clinical P. aeruginosa isolates were 32 to 64 µg/ml, and its MICs versus other Gram-negative bacteria were 2 to 32 µg/ml. Importantly, cecropin A2 demonstrated synergistic activity against P. aeruginosa when combined with tetracycline, reducing the MICs of both agents by 8-fold. The combination was also effective in vivo in the P. aeruginosa/Galleria mellonella model (P < 0.001). We found that cecropin A2 bound to P. aeruginosa lipopolysaccharides, permeabilized the membrane, and interacted with the bacterial genomic DNA, thus facilitating the translocation of tetracycline into the cytoplasm. In summary, the combination of cecropin A2 and tetracycline demonstrated synergistic antibacterial activity against P. aeruginosain vitro and in vivo, offering an alternative approach for the treatment of P. aeruginosa infections.


Assuntos
Antibacterianos/farmacologia , Cecropinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tetraciclina/farmacologia , Aedes , Animais , Sinergismo Farmacológico , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-28533240

RESUMO

Human cryptococcosis can occur as a primary or opportunistic infection and develops as an acute, subacute, or chronic systemic infection involving different organs of the host. Given the limited therapeutic options and the occasional resistance to fluconazole, there is a need to develop novel drugs for the treatment of cryptococcosis. In this report, we describe promising thiazole compounds 1, 2, 3, and 4 and explore their possible modes of action against Cryptococcus To this end, we show evidence of interference in the Cryptococcus antioxidant system. The tested compounds exhibited MICs ranging from 0.25 to 2 µg/ml against Cryptococcus neoformans strains H99 and KN99α. Interestingly, the knockout strains for Cu oxidase and sarcosine oxidase were resistant to thiazoles. MIC values of thiazole compounds 1, 2, and 4 against these mutants were higher than for the parental strain. After the treatment of C. neoformans ATCC 24067 (or C. deneoformans) and C. gattii strain L27/01 (or C. deuterogattii) with thiazoles, we verified an increase in intracellular reactive oxygen species (ROS). Also, we verified the synergistic interactions among thiazoles and menadione, which generates superoxides, with fractional inhibitory concentrations (FICs) equal to 0.1874, 0.3024, 0.25, and 0.25 for the thiazole compounds 1, 2, 3, and 4, respectively. In addition, thiazoles exhibited antagonistic interactions with parasulphonatephenyl porphyrinato ferrate III (FeTPPS). Thus, in this work, we showed that the action of these thiazoles is related to an interference with the antioxidant system. These findings suggest that oxidative stress may be primarily related to the accumulation of superoxide radicals.


Assuntos
Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/farmacologia , Farmacorresistência Fúngica , Humanos , Testes de Sensibilidade Microbiana , Oxirredutases/genética , Sarcosina Oxidase/genética , Vitamina K 3/metabolismo
10.
Mycopathologia ; 181(1-2): 17-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26384671

RESUMO

The echinocandin family of drugs is well characterized for antifungal function that inhibits ß-D-glucan synthesis. The aim of this work was to study whether micafungin, a member of the echinocandin family, elicits additional activities that prime the host's immune response. We found that in a Galleria mellonella model, prophylactic treatment with micafungin extended the life of Staphylococcus aureus-infected larvae (a pathogen to which the drug demonstrates no direct antimicrobial activity) compared to insects that did not receive micafungin (P < 0.05). The inhibition of pathogens in the G. mellonella infection model was characterized by a 2.43-fold increase in hemocyte density, compared to larvae inoculated with PBS. In a murine model where animals were provided micafungin prophylaxis 3 days prior to macrophage collection, macrophages were found associated with an average 0.9 more fungal cells per macrophage as compared to saline-treated animals. Interestingly, micafungin-stimulated macrophages killed 11.6 ± 6.2 % of fungal cells compared to 3.8 ± 2.4 % of macrophages from saline-treated animals. The prophylactic provision of micafungin prior to Candida albicans infection was characterized by an increase in the proinflammatory cytokines CXCL13 and SPP1 by 11- and 6.9-fold, respectively. In conclusion, micafungin demonstrated the ability to stimulate phagocytic cells and promote an immune response that can inhibit microbial infections.


Assuntos
Equinocandinas/administração & dosagem , Equinocandinas/farmacologia , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/farmacologia , Lipopeptídeos/administração & dosagem , Lipopeptídeos/farmacologia , Animais , Candida albicans/imunologia , Candida albicans/fisiologia , Modelos Animais de Doenças , Lepidópteros , Macrófagos/imunologia , Macrófagos/microbiologia , Micafungina , Camundongos , Viabilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Análise de Sobrevida , Resultado do Tratamento
11.
Clin Microbiol Rev ; 27(3): 490-526, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24982319

RESUMO

Invasive fungal infections constitute a serious threat to an ever-growing population of immunocompromised individuals and other individuals at risk. Traditional diagnostic methods, such as histopathology and culture, which are still considered the gold standards, have low sensitivity, which underscores the need for the development of new means of detecting fungal infectious agents. Indeed, novel serologic and molecular techniques have been developed and are currently under clinical evaluation. Tests like the galactomannan antigen test for aspergillosis and the ß-glucan test for invasive Candida spp. and molds, as well as other antigen and antibody tests, for Cryptococcus spp., Pneumocystis spp., and dimorphic fungi, have already been established as important diagnostic approaches and are implemented in routine clinical practice. On the other hand, PCR and other molecular approaches, such as matrix-assisted laser desorption ionization (MALDI) and fluorescence in situ hybridization (FISH), have proved promising in clinical trials but still need to undergo standardization before their clinical use can become widespread. The purpose of this review is to highlight the different diagnostic approaches that are currently utilized or under development for invasive fungal infections and to identify their performance characteristics and the challenges associated with their use.


Assuntos
Fungos/fisiologia , Técnicas Microbiológicas/métodos , Micoses/diagnóstico , Micoses/microbiologia , Animais , Humanos , Técnicas Microbiológicas/normas , Reprodutibilidade dos Testes
12.
J Infect Dis ; 211(2): 298-305, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25114160

RESUMO

A multi-host approach was followed to screen a library of 1201 signature-tagged deletion strains of Cryptococcus neoformans mutants to identify previously unknown virulence factors. The primary screen was performed using a Caenorhabditis elegans-C. neoformans infection assay. The hits among these strains were reconfirmed as less virulent than the wild type in the insect Galleria mellonella-C. neoformans infection assay. After this 2-stage screen, and to prioritize hits, we performed serial evaluations of the selected strains, using the C. elegans model. All hit strains identified through these studies were validated in a murine model of systemic cryptococcosis. Twelve strains were identified through a stepwise screening assay. Among them, 4 (CSN1201, SRE1, RDI1, and YLR243W) were previously discovered, providing proof of principle for this approach, while the role of the remaining 8 genes (CKS101, CNC5600, YOL003C, CND1850, MLH3, HAP502, MSL5, and CNA2580) were not previously described in cryptococcal virulence. The multi-host approach is an efficient method of studying the pathogenesis of C. neoformans. We used diverse model hosts, C. elegans, G. mellonella, and mice, with physiological differences and identified 12 genes associated with mammalian infection. Our approach may be suitable for large pathogenesis screens.


Assuntos
Caenorhabditis elegans/microbiologia , Cryptococcus neoformans/patogenicidade , Mariposas/microbiologia , Fatores de Virulência/análise , Animais , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Testes Genéticos , Camundongos , Fatores de Virulência/genética
13.
Antimicrob Agents Chemother ; 59(10): 6581-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26259795

RESUMO

Candida parapsilosis is the main non-albicans Candida species isolated from patients in Latin America. Mutations in the ERG11 gene and overexpression of membrane transporter proteins have been linked to fluconazole resistance. The aim of this study was to evaluate the molecular mechanisms in fluconazole-resistant strains of C. parapsilosis isolated from critically ill patients. The identities of the nine collected C. parapsilosis isolates at the species level were confirmed through molecular identification with a TaqMan qPCR assay. The clonal origin of the strains was checked by microsatellite typing. The Galleria mellonella infection model was used to confirm in vitro resistance. We assessed the presence of ERG11 mutations, as well as the expression of ERG11 and two additional genes that contribute to antifungal resistance (CDR1 and MDR1), by using real-time quantitative PCR. All of the C. parapsilosis (sensu stricto) isolates tested exhibited fluconazole MICs between 8 and 16 µg/ml. The in vitro data were confirmed by the failure of fluconazole in the treatment of G. mellonella infected with fluconazole-resistant strains of C. parapsilosis. Sequencing of the ERG11 gene revealed a common mutation leading to a Y132F amino acid substitution in all of the isolates, a finding consistent with their clonal origin. After fluconazole exposure, overexpression was noted for ERG11, CDR1, and MDR1 in 9/9, 9/9, and 2/9 strains, respectively. We demonstrated that a combination of molecular mechanisms, including the presence of point mutations in the ERG11 gene, overexpression of ERG11, and genes encoding efflux pumps, are involved in fluconazole resistance in C. parapsilosis.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/patogenicidade , Fluconazol/farmacologia , Larva/microbiologia , Mariposas/microbiologia , Animais , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana
14.
Antimicrob Agents Chemother ; 59(3): 1728-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583713

RESUMO

The rise of multidrug-resistant Acinetobacter baumannii and a concomitant decrease in antibiotic treatment options warrants a search for new classes of antibacterial agents. We have found that A. baumannii is pathogenic and lethal to the model host organism Caenorhabditis elegans and have exploited this phenomenon to develop an automated, high-throughput, high-content screening assay in liquid culture that can be used to identify novel antibiotics effective against A. baumannii. The screening assay involves coincubating C. elegans with A. baumannii in 384-well plates containing potential antibacterial compounds. At the end of the incubation period, worms are stained with a dye that stains only dead animals, and images are acquired using automated microscopy and then analyzed using an automated image analysis program. This robust assay yields a Z' factor consistently greater than 0.7. In a pilot experiment to test the efficacy of the assay, we screened a small custom library of synthetic antimicrobial peptides (AMPs) that were synthesized using publicly available sequence data and/or transcriptomic data from immune-challenged insects. We identified cecropin A and 14 other cecropin or cecropin-like peptides that were able to enhance C. elegans survival in the presence of A. baumannii. Interestingly, one particular hit, BR003-cecropin A, a cationic peptide synthesized by the mosquito Aedes aegypti, showed antibiotic activity against a panel of Gram-negative bacteria and exhibited a low MIC (5 µg/ml) against A. baumannii. BR003-cecropin A causes membrane permeability in A. baumannii, which could be the underlying mechanism of its lethality.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Caenorhabditis elegans/microbiologia , Cecropinas/farmacologia , Insetos/metabolismo , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
15.
Bioorg Med Chem Lett ; 25(22): 5203-7, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26459212

RESUMO

The emergence of multidrug-resistant bacterial strains has heightened the need for new antimicrobial agents based on novel chemical scaffolds that are able to circumvent current modes of resistance. We recently developed a whole-animal drug-screening methodology in pursuit of this goal and now report the discovery of 3-(phenylsulfonyl)-2-pyrazinecarbonitrile (PSPC) as a novel antibacterial effective against resistant nosocomial pathogens. The minimum inhibitory concentrations (MIC) of PSPC against Staphylococcus aureus and Enterococcus faecium were 4 µg/mL and 8 µg/mL, respectively, whereas the MICs were higher against the Gram-negative bacteria Klebsiella pneumoniae (64 µg/mL), Acinetobacter baumannii (32 µg/mL), Pseudomonas aeruginosa (>64 µg/mL), and Enterobacter spp. (>64 µg/mL). However, co-treatment of PSPC with the efflux pump inhibitor phenylalanine arginyl ß-naphthylamide (PAßN) or with sub-inhibitory concentrations of the lipopeptide antibiotic polymyxin B reduced the MICs of PSPC against the Gram-negative strains by >4-fold. A sulfide analog of PSPC (PSPC-1S) showed no antibacterial activity, whereas the sulfoxide analog (PSPC-6S) showed identical activity as PSPC across all strains, confirming structure-dependent activity for PSPC and suggesting a target-based mechanism of action. PSPC displayed dose dependent toxicity to both Caenorhabditis elegans and HEK-293 mammalian cells, culminating with a survival rate of 16% (100 µg/mL) and 8.5% (64 µg/mL), respectively, at the maximum tested concentration. However, PSPC did not result in hemolysis of erythrocytes, even at a concentration of 64 µg/mL. Together these results support PSPC as a new chemotype suitable for further development of new antibiotics against Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pirazinas/farmacologia , Animais , Caenorhabditis elegans , Dipeptídeos/farmacologia , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Pirazinas/sangue , Ovinos , Vancomicina/farmacologia
16.
Antimicrob Agents Chemother ; 57(1): 445-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23129051

RESUMO

The objective of this study was to evaluate whether Candida albicans exhibits altered pathogenicity characteristics following sublethal antimicrobial photodynamic inactivation (APDI) and if such alterations are maintained in the daughter cells. C. albicans was exposed to sublethal APDI by using methylene blue (MB) as a photosensitizer (0.05 mM) combined with a GaAlAs diode laser (λ 660 nm, 75 mW/cm(2), 9 to 27 J/cm(2)). In vitro, we evaluated APDI effects on C. albicans growth, germ tube formation, sensitivity to oxidative and osmotic stress, cell wall integrity, and fluconazole susceptibility. In vivo, we evaluated C. albicans pathogenicity with a mouse model of systemic infection. Animal survival was evaluated daily. Sublethal MB-mediated APDI reduced the growth rate and the ability of C. albicans to form germ tubes compared to untreated cells (P < 0.05). Survival of mice systemically infected with C. albicans pretreated with APDI was significantly increased compared to mice infected with untreated yeast (P < 0.05). APDI increased C. albicans sensitivity to sodium dodecyl sulfate, caffeine, and hydrogen peroxide. The MIC for fluconazole for C. albicans was also reduced following sublethal MB-mediated APDI. However, none of those pathogenic parameters was altered in daughter cells of C. albicans submitted to APDI. These data suggest that APDI may inhibit virulence factors and reduce in vivo pathogenicity of C. albicans. The absence of alterations in daughter cells indicates that APDI effects are transitory. The MIC reduction for fluconazole following APDI suggests that this antifungal could be combined with APDI to treat C. albicans infections.


Assuntos
Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Azul de Metileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fatores de Virulência/antagonistas & inibidores , Animais , Antifúngicos/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candida albicans/efeitos da radiação , Candidíase/microbiologia , Candidíase/mortalidade , Parede Celular/efeitos dos fármacos , Parede Celular/efeitos da radiação , Feminino , Fluconazol/farmacologia , Padrões de Herança , Lasers Semicondutores , Luz , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pressão Osmótica , Estresse Oxidativo , Análise de Sobrevida , Fatores de Virulência/metabolismo
17.
Front Cell Infect Microbiol ; 13: 1135942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313344

RESUMO

Microbe entry through catheter ports can lead to biofilm accumulation and complications from catheter-related bloodstream infection and ultimately require antimicrobial treatment and catheter replacement. Although strides have been made with microbial prevention by applying standardized antiseptic techniques during catheter implantation, both bacterial and fungal microbes can present health risks to already sick individuals. To reduce microbial adhesion, murine and human catheters were coated with polyurethane and auranofin using a dip coating method and compared to non-coated materials. Upon passage of fluid through the coated material in vitro, flow dynamics were not impacted. The unique antimicrobial properties of the coating material auranofin has shown inhibitory activity against bacteria such as Staphylococcus aureus and fungi such as Candida albicans. Auranofin coating on catheters at 10mg/mL reduced C. albicans accumulation in vitro from 2.0 x 108 to 7.8 x 105 CFU for mouse catheters and from 1.6 x 107 to 2.8 x 106 for human catheters, showing an impact to mature biofilms. Assessment of a dual microbe biofilm on auranofin-coated catheters resulted in a 2-log reduction in S. aureus and a 3-log reduction in C. albicans compared to uncoated catheters. In vivo assessment in a murine subcutaneous model demonstrated that catheters coated with 10 mg/mL auranofin reduced independent S. aureus and C. albicans accumulation by 4-log and 1-log, respectively, compared to non-coated catheters. In conclusion, the auranofin-coated catheters demonstrate proficiency at inhibiting multiple pathogens by decreasing S. aureus and C. albicans biofilm accumulation.


Assuntos
Auranofina , Staphylococcus aureus , Humanos , Animais , Camundongos , Auranofina/farmacologia , Bactérias , Biofilmes , Candida albicans , Catéteres
18.
Clin Infect Dis ; 54(9): 1322-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22362884

RESUMO

Currently accepted fungal diagnostic techniques, such as culture, biopsy, and serology, lack rapidity and efficiency. Newer diagnostic methods, such as polymerase chain reaction (PCR)-based assays, have the potential to improve fungal diagnostics in a faster, more sensitive, and specific manner. Preliminary data indicate that, when PCR-based fungal diagnostic assays guide antifungal therapy, they may lower patient mortality and decrease unnecessary antifungal treatment, improving treatment-associated costs and avoiding toxicity. Moreover, newer PCR techniques can identify antifungal resistance DNA loci, but the clinical correlation between those loci and clinical failure has to be studied further. In addition, future studies need to focus on the implementation of PCR techniques in clinical decision making and on combining them with other diagnostic tests. A consensus on the standardization of PCR techniques, along with validation from large prospective studies, is necessary to allow widespread adoption of these assays.


Assuntos
Fungos/genética , Micoses/diagnóstico , Reação em Cadeia da Polimerase/métodos , Antifúngicos/uso terapêutico , DNA Fúngico/genética , Farmacorresistência Fúngica/genética , Humanos , Micoses/tratamento farmacológico , Reação em Cadeia da Polimerase/normas , Sensibilidade e Especificidade
19.
Med Mycol ; 50(5): 488-96, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22225407

RESUMO

Fusariosis is an emerging infectious complication of immune deficiency, but models to study this infection are lacking. The use of the soil nematode Caenorhabditis elegans as a model host to study the pathogenesis of Fusarium spp. was investigated. We observed that Fusarium conidia consumed by C. elegans can cause a lethal infection and result in more than 90% killing of the host within 120 hours, and the nematode had a significantly longer survival when challenged with Fusarium proliferatum compared to other species. Interestingly, mycelium production appears to be a major contributor in nematode killing in this model system, and C. elegans mutant strains with the immune response genes, tir-1 (encoding a protein containing a TIR domain that functions upstream of PMK-1) and pmk-1 (the homolog of the mammalian p38 MAPK) lived significantly shorter when challenged with Fusarium compared to the wild type strain. Furthermore, we used the C. elegans model to assess the efficacy and toxicity of various compounds against Fusarium. We demonstrated that amphotericin B, voriconazole, mancozeb, and phenyl mercury acetate significantly prolonged the survival of Fusarium-infected C. elegans, although mancozeb was toxic at higher concentrations. In conclusion, we describe a new model system for the study of Fusarium pathogenesis and evolutionarily preserved host responses to this important fungal pathogen.


Assuntos
Caenorhabditis elegans/microbiologia , Modelos Animais de Doenças , Fusariose/imunologia , Fusarium/patogenicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Micélio/metabolismo , Animais , Antifúngicos/farmacologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fusariose/microbiologia , Fusarium/classificação , Fusarium/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Transdução de Sinais/imunologia
20.
Proc Natl Acad Sci U S A ; 105(38): 14585-90, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18794525

RESUMO

Prokaryote-eukaryote interactions are ubiquitous and have important medical and environmental significance. Despite this, a paucity of data exists on the mechanisms and pathogenic consequences of bacterial-fungal encounters within a living host. We used the nematode Caenorhabditis elegans as a substitute host to study the interactions between two ecologically related and clinically troublesome pathogens, the prokaryote, Acinetobacter baumannii, and the eukaryote, Candida albicans. After co-infecting C. elegans with these organisms, we observed that A. baumannii inhibits filamentation, a key virulence determinant of C. albicans. This antagonistic, cross-kingdom interaction led to attenuated virulence of C. albicans, as determined by improved nematode survival when infected with both pathogens. In vitro coinfection assays in planktonic and biofilm environments supported the inhibitory effects of A. baumannii toward C. albicans, further showing a predilection of A. baumannii for C. albicans filaments. Interestingly, we demonstrate a likely evolutionary defense by C. albicans against A. baumannii, whereby C. albicans inhibits A. baumannii growth once a quorum develops. This counteroffensive is at least partly mediated by the C. albicans quorum-sensing molecule farnesol. We used the C. elegans-A. baumannii-C. albicans coinfection model to screen an A. baumannii mutant library, leading to the identification of several mutants attenuated in their inhibitory activity toward C. albicans. These findings present an extension to the current paradigm of studying monomicrobial pathogenesis in C. elegans and by use of genetic manipulation, provides a whole-animal model system to investigate the complex dynamics of a polymicrobial infection.


Assuntos
Acinetobacter baumannii/fisiologia , Caenorhabditis elegans/microbiologia , Candida albicans/fisiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Farneseno Álcool/farmacologia , Testes Genéticos , Mutação , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA