RESUMO
SARS-CoV-2 spike mRNA vaccines1-3 mediate protection from severe disease as early as ten days after prime vaccination3, when neutralizing antibodies are hardly detectable4-6. Vaccine-induced CD8+ T cells may therefore be the main mediators of protection at this early stage7,8. The details of their induction, comparison to natural infection, and association with other arms of vaccine-induced immunity remain, however, incompletely understood. Here we show on a single-epitope level that a stable and fully functional CD8+ T cell response is vigorously mobilized one week after prime vaccination with bnt162b2, when circulating CD4+ T cells and neutralizing antibodies are still weakly detectable. Boost vaccination induced a robust expansion that generated highly differentiated effector CD8+ T cells; however, neither the functional capacity nor the memory precursor T cell pool was affected. Compared with natural infection, vaccine-induced early memory T cells exhibited similar functional capacities but a different subset distribution. Our results indicate that CD8+ T cells are important effector cells, are expanded in the early protection window after prime vaccination, precede maturation of other effector arms of vaccine-induced immunity and are stably maintained after boost vaccination.
Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vacina BNT162 , Linfócitos T CD4-Positivos/imunologia , COVID-19/virologia , Células Cultivadas , Epitopos de Linfócito T/imunologia , Humanos , Imunização Secundária , Memória Imunológica/imunologia , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Vacinas de mRNARESUMO
Recurrent, ancient arms races between viruses and hosts have shaped both host immunological defense strategies as well as viral countermeasures. One such battle is waged by the glycoprotein US11 encoded by the persisting human cytomegalovirus. US11 mediates degradation of major histocompatibility class I (MHC-I) molecules to prevent CD8+ T-cell activation. Here, we studied the consequences of the arms race between US11 and primate MHC-A proteins, leading us to uncover a tit-for-tat coevolution and its impact on MHC-A diversification. We found that US11 spurred MHC-A adaptation to evade viral antagonism: In an ancestor of great apes, the MHC-A A2 lineage acquired a Pro184Ala mutation, which confers resistance against the ancestral US11 targeting strategy. In response, US11 deployed a unique low-complexity region (LCR), which exploits the MHC-I peptide loading complex to target the MHC-A2 peptide-binding groove. In addition, the global spread of the human HLA-A*02 allelic family prompted US11 to employ a superior LCR strategy with an optimally fitting peptide mimetic that specifically antagonizes HLA-A*02. Thus, despite cytomegaloviruses low pathogenic potential, the increasing commitment of US11 to MHC-A has significantly promoted diversification of MHC-A in hominids.
Assuntos
Antígenos de Histocompatibilidade Classe I , Hominidae , Animais , Humanos , Proteínas Virais/metabolismo , Citomegalovirus , Hominidae/genética , Hominidae/metabolismo , Linhagem Celular , Antígenos de Histocompatibilidade/metabolismo , Antígenos HLA-A/metabolismo , Peptídeos/metabolismoRESUMO
Mammalian myxovirus resistance (Mx) proteins are interferon-induced, large dynamin-like GTPases with a broad antiviral spectrum. Here, we analyzed the antiviral activity of selected mammalian Mx1 proteins against Thogoto virus (THOV). Of those, equine Mx1 (eqMx1) showed antiviral activity comparable to that of the human MX1 gene product, designated huMxA, whereas most Mx1 proteins were antivirally inactive. We previously demonstrated that the flexible loop L4 protruding from the stalk domain of huMxA, and especially the phenylalanine at position 561 (F561), determines its antiviral specificity against THOV (P. S. Mitchell, C. Patzina, M. Emerman, O. Haller, et al., Cell Host Microbe 12:598-604, 2012, https://doi.org/10.1016/j.chom.2012.09.005). However, despite the similar antiviral activity against THOV, the loop L4 sequence of eqMx1 substantially differs from the one of huMxA. Mutational analysis of eqMx1 L4 identified a tryptophan (W562) and the adjacent glycine (G563) as critical antiviral determinants against THOV, whereas the neighboring residues could be exchanged for nonpolar alanines without affecting the antiviral activity. Further mutational analyses revealed that a single bulky residue at position 562 and the adjacent tiny residue G563 were sufficient for antiviral activity. Moreover, this minimal set of L4 amino acids transferred anti-THOV activity to the otherwise inactive bovine Mx1 (boMx1) protein. Taken together, our data suggest a fairly simple architecture of the antiviral loop L4 that could serve as a mutational hot spot in an evolutionary arms race between Mx-escaping viral variants and their hosts. IMPORTANCE Most mammals encode two paralogs of the interferon-induced Mx proteins: Mx1, with antiviral activity largely against RNA viruses, like orthomyxoviruses and bunyaviruses; and Mx2, which is antivirally active against HIV-1 and herpesviruses. The human Mx1 protein, also called huMxA, is the best-characterized example of mammalian Mx1 proteins and was recently shown to prevent zoonotic virus transmissions. To evaluate the antiviral activity of other mammalian Mx1 proteins, we used Thogoto virus, a tick-transmitted orthomyxovirus, which is efficiently blocked by huMxA. Interestingly, we detected antiviral activity only with equine Mx1 (eqMx1) but not with other nonprimate Mx1 proteins. Detailed functional analysis of eqMx1 identified amino acid residues in the unstructured loop L4 of the stalk domain critical for antiviral activity. The structural insights of the present study explain the unique position of eqMx1 antiviral activity within the collection of nonhuman mammalian Mx1 proteins.
Assuntos
Cavalos , Proteínas de Resistência a Myxovirus , Thogotovirus , Animais , Bovinos , Humanos , Interferons/metabolismo , Estrutura Molecular , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Thogotovirus/genéticaRESUMO
IMPORTANCE: The influenza A virus genome consists of eight distinct viral RNAs (vRNAs) that are typically packaged into a single virion as an octameric complex. How this genome complex is assembled and incorporated into the virion is poorly understood, but previous research suggests a coordinative role for packaging signals present in all vRNAs. Here, we show that disruption of two packaging signals in a model H7N7 influenza A virus results in a mixture of virions with unusual vRNA content, including empty virions, virions with one to four vRNAs, and virions with octameric complexes composed of vRNA duplicates. Our results suggest that (i) the assembly of error-free octameric complexes proceeds through a series of defined vRNA sub-complexes and (ii) virions can bud without incorporating complete octameric complexes.
Assuntos
Vírus da Influenza A Subtipo H7N7 , Vírus da Influenza A , Empacotamento do Genoma Viral , Montagem de Vírus , Genoma Viral , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H7N7/genética , RNA Viral/genética , Vírion/genéticaRESUMO
The recent discovery of Bourbon virus (BRBV) put a new focus on the genus of thogotoviruses as zoonotic, tick-transmitted pathogens within the orthomyxovirus family. Since 2014, BRBV has been linked to several human cases in the Midwest United States with severe acute febrile illness and a history of tick bites. The detection of the virus in the Lone Star tick, Amblyomma americanum, and a high sero-prevalence in wild animals suggest widespread circulation of BRBV. Phylogenetic analysis of the viral RNA genome classified BRBV into the subgroup of Dhori-like thogotoviruses. Strikingly, BRBV is apathogenic in mice, contrasting not only with the fatal disease in affected patients but also with the severe disease in mice caused by other members of the thogotovirus genus. To gain insights into this intriguing discrepancy, we will review the molecular biology and pathology of BRBV and its unique position within the thogotovirus genus. Lastly, we will discuss the zoonotic threat posed by this newly discovered pathogen.
Assuntos
Thogotovirus , Humanos , Animais , Camundongos , Thogotovirus/genética , Filogenia , Animais Selvagens , RNA Viral/genéticaRESUMO
Thogotoviruses are tick-borne arboviruses that comprise a unique genus within the Orthomyxoviridae family. Infections with thogotoviruses primarily cause disease in livestock with occasional reports of human infections suggesting a zoonotic potential. In the past, multiple genetically distinct thogotoviruses were isolated mostly from collected ticks. However, many aspects regarding their phylogenetic relationships, morphological characteristics, and virulence in mammals remain unclear. For the present comparative study, we used a collection of 10 different thogotovirus isolates from different geographic areas. Next-generation sequencing and subsequent phylogenetic analyses revealed a distinct separation of these viruses into two major clades, the Thogoto-like and Dhori-like viruses. Electron microscopy demonstrated a heterogeneous morphology with spherical and filamentous particles being present in virus preparations. To study their pathogenicity, we analyzed the viruses in a small animal model system. In intraperitoneally infected C57BL/6 mice, all isolates showed a tropism for liver, lung, and spleen. Importantly, we did not observe horizontal transmission to uninfected, highly susceptible contact mice. The isolates enormously differed in their capacity to induce disease, ranging from subclinical to fatal outcomes. In vivo multistep passaging experiments of two low-pathogenic isolates showed no increased virulence and sequence analyses of the passaged viruses indicated a high stability of the viral genomes after 10 mouse passages. In summary, our analysis demonstrates the broad genetic and phenotypic variability within the thogotovirus genus. Moreover, thogotoviruses are well adapted to mammals but their horizontal transmission seems to depend on ticks as their vectors. IMPORTANCE Since their discovery over 60 years ago, 15 genetically distinct members of the thogotovirus genus have been isolated. These arboviruses belong to the Orthomyxovirus family and share many features with influenza viruses. However, numerous of these isolates have not been characterized in depth. In the present study, we comparatively analyzed a collection of 10 different thogotovirus isolates to answer basic questions about their phylogenetic relationships, morphology, and pathogenicity in mice. Our results highlight shared and unique characteristics of this diverse genus. Taken together, these observations provide a framework for the phylogenic classification and phenotypic characterization of newly identified thogotovirus isolates that could potentially cause severe human infections as exemplified by the recently reported, fatal Bourbon virus cases in the United States.
Assuntos
Infecções por Orthomyxoviridae , Thogotovirus , Animais , Modelos Animais de Doenças , Variação Genética , Genoma Viral/genética , Instabilidade Genômica , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Thogotovirus/classificação , Thogotovirus/genética , Thogotovirus/patogenicidade , Thogotovirus/ultraestrutura , Carrapatos/virologiaRESUMO
PURPOSE: This study aims to describe clinical, virological and radiological characteristics as well as treatment strategies and outcomes of immunocompromised patients with persistent SARS-CoV-2 replication. METHODS: We performed a retrospective cohort study of immunocompromised patients at the University Medical Center Freiburg between 01/2022 and 05/2023. Patients with substantial immunosuppression and persistent SARS-CoV-2 detection (Ct-value < 30 after 14 days) were included. RESULTS: 36 patients in our cohort reported mainly fever, dyspnoea or continuous cough. Viral load was significantly higher in concurrent samples taken from the lower respiratory tract (Ct-value = 26) than from the upper respiratory tract (Ct-value = 34). Time of detectable viral RNA after start of antiviral treatment was shorter in patients receiving two antivirals (median 15 days vs. 31 days with one antiviral agent). Short-course antiviral therapy (≤ 5 days) was less efficient in reduction of symptoms and viral load than prolonged therapy > 10 days. In 30% (8/27) of patients with repeated CT scans, we found the emergence of chronic pulmonary changes, which were more frequently in patients with B cell depletion (37%, 7/19) compared to patients with organ transplantation (12%, 2/17). CONCLUSION: Ongoing SARS-CoV-2 replication in the lower respiratory tract is a relevant differential diagnosis in patients with severe immunosuppression and continuous cough, fever or dyspnoea even if nasopharyngeal swabs test negative for SARS-CoV-2. Especially in B cell-depleted patients, this may lead to inflammatory or fibrotic-like pulmonary changes, which are partially reversible after inhibition of viral replication. Antiviral therapy seems to be most effective in combination and over a prolonged period of time of > 10 days. TRIAL REGISTRATION NUMBER: DRKS 00027299.
RESUMO
Patients with primary antibody deficiency are at risk for severe and in many cases for prolonged COVID-19. Convalescent plasma treatment of immunocompromised individuals could be an option especially in countries with limited access to monoclonal antibody therapies. While studies in immunocompetent COVID19 patients have demonstrated only a limited benefit, evidence for the safety, timing, and effectiveness of this treatment in antibody-deficient patients is lacking. Here, we describe 16 cases with primary antibody deficiency treated with convalescent plasma in four medical centers. In our cohort, treatment was associated with a reduction in viral load and improvement of clinical symptoms, even when applied over a week after onset of infection. There were no relevant side effects besides a short-term fever reaction in one patient. Longitudinal full-genome sequencing revealed the emergence of mutations in the viral genome, potentially conferring an antibody escape in one patient with persistent viral RNA shedding upon plasma treatment. However, he resolved the infection after a second course of plasma treatment. Thus, our data suggest a therapeutic benefit of convalescent plasma treatment in patients with primary antibody deficiency even months after infection. While it appears to be safe, PCR follow-up for SARS-CoV-2 is advisable and early re-treatment might be considered in patients with persistent viral shedding.
Assuntos
COVID-19/imunologia , COVID-19/terapia , Plasma/imunologia , Doenças da Imunodeficiência Primária/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Criança , Feminino , Humanos , Imunização Passiva/métodos , Masculino , Pessoa de Meia-Idade , Eliminação de Partículas Virais/imunologia , Adulto Jovem , Soroterapia para COVID-19RESUMO
This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Laboratórios , Laboratórios Clínicos , Projetos PilotoRESUMO
Infections with emerging and re-emerging arboviruses are of increasing concern for global health. Tick-transmitted RNA viruses of the genus Thogotovirus in the Orthomyxoviridae family have considerable zoonotic potential, as indicated by the recent emergence of Bourbon virus in the USA. To successfully infect humans, arboviruses have to escape the restrictive power of the interferon defense system. This is exemplified by the high sensitivity of thogotoviruses to the antiviral action of the interferon-induced myxovirus resistance protein A (MxA) that inhibits the polymerase activity of incoming viral ribonucleoprotein complexes. Acquiring resistance to human MxA would be expected to enhance the zoonotic potential of these pathogens. Therefore, we screened a panel of 10 different thogotovirus isolates obtained from various parts of the world for their sensitivity to MxA. A single isolate from Nigeria, Jos virus, showed resistance to the antiviral action of MxA in cell culture and in MxA-transgenic mice, whereas the prototypic Sicilian isolate SiAr126 was fully MxA-sensitive. Further analysis identified two amino acid substitutions (G327R and R328V) in the viral nucleoprotein as determinants for MxA resistance. Importantly, when introduced into SiAr126, the R328V mutation resulted in complete MxA escape of the recombinant virus, without causing any viral fitness loss. The escape mutation abolished viral nucleoprotein recognition by MxA and allowed unhindered viral growth in MxA-expressing cells and in MxA-transgenic mice. These findings demonstrate that thogotoviruses can overcome the species barrier by escaping MxA restriction and reveal that these tick-transmitted viruses may have a greater zoonotic potential than previously suspected.
Assuntos
Proteínas de Resistência a Myxovirus/metabolismo , Infecções por Orthomyxoviridae/virologia , Thogotovirus/genética , Carrapatos/virologia , Proteínas Virais/genética , Substituição de Aminoácidos , Animais , Antivirais , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Proteínas de Resistência a Myxovirus/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Infecções por Orthomyxoviridae/transmissão , Thogotovirus/patogenicidade , Thogotovirus/fisiologia , Células Vero , Proteínas Virais/metabolismo , VirulênciaRESUMO
Seasonal influenza viruses circulating between 1918 and 2009 harboured two prevalent genetic variations in the NS1 coding region. A glutamic acid (E)-to-lysine (K) exchange at position 196 was reported to diminish the capacity of NS1 to control interferon induction. Furthermore, alterations at position 231 determine a carboxy-terminal extension of seven amino acids from 230 to 237 residues. Sequence analyses of NS1 of the last 90 years suggest that variations at these two positions are functionally linked. To determine the impact of the two positions on viral replication in vivo, we used a mouse-adapted variant of A/Hong Kong/01/68 (maHK68) (H3N2). maHK68 encodes an NS1 of 237 amino acids with lysine at position 196. A panel of recombinant maHK68 viruses was generated encoding NS1 variants that differed at positions 196 and 231. Our analyses showed a clear effect of the K-196-to-E exchange on interferon induction and virus virulence. These effects were further modulated by the loss of the seven-amino-acid extension. We propose that the combination of NS1 E-196 with the short C-terminal variant conferred a fitness advantage that is reflected by increased virulence in vivo. Notably, this particular NS1 constellation was observed for the pandemic 1918 H1N1 virus.
Assuntos
Códon/genética , Proteínas não Estruturais Virais/genética , Virulência/genética , Replicação Viral/genética , Células A549 , Aminoácidos/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cães , Evolução Molecular , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologiaRESUMO
Bourbon virus (BRBV) is a recently discovered tick-transmitted viral pathogen that is prevalent in the Midwest and southern United States. Since 2014, zoonotic BRBV infections have been verified in several human cases of severe febrile illness, occasionally with fatal outcomes, indicating a possible public health threat. We analyzed the pathology of BRBV infection in mice and found a high sensitivity of the virus to the host interferon system. Infected standard laboratory mice did not show clinical signs or virus replication. However, in mice carrying defects in the type I and type II interferon system, the virus grew to high titers and caused severe pathology. In cell culture, BRBV was blocked by antiviral agents like ribavirin and favipiravir (T705). Our data suggest that persons having severe BRBV infection might have a deficiency in their innate immunity and could benefit from an already approved antiviral treatment.
Assuntos
Interações Hospedeiro-Patógeno , Influenza Humana/metabolismo , Influenza Humana/virologia , Interferons/metabolismo , Thogotovirus/fisiologia , Animais , Anticorpos Monoclonais/farmacologia , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/imunologia , Influenza Humana/mortalidade , Interferons/antagonistas & inibidores , Interferons/farmacologia , Masculino , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Thogotovirus/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacosRESUMO
Bats serve as a reservoir for various, often zoonotic viruses, including significant human pathogens such as Ebola and influenza viruses. However, for unknown reasons, viral infections rarely cause clinical symptoms in bats. A tight control of viral replication by the host innate immune defense might contribute to this phenomenon. Transcriptomic studies revealed the presence of the interferon-induced antiviral myxovirus resistance (Mx) proteins in bats, but detailed functional aspects have not been assessed. To provide evidence that bat Mx proteins might act as key factors to control viral replication we cloned Mx1 cDNAs from three bat families, Pteropodidae, Phyllostomidae, and Vespertilionidae. Phylogenetically these bat Mx1 genes cluster closely with their human ortholog MxA. Using transfected cell cultures, minireplicon systems, virus-like particles, and virus infections, we determined the antiviral potential of the bat Mx1 proteins. Bat Mx1 significantly reduced the polymerase activity of viruses circulating in bats, including Ebola and influenza A-like viruses. The related Thogoto virus, however, which is not known to infect bats, was not inhibited by bat Mx1. Further, we provide evidence for positive selection in bat Mx1 genes that might explain species-specific antiviral activities of these proteins. Together, our data suggest a role for Mx1 in controlling these viruses in their bat hosts.IMPORTANCE Bats are a natural reservoir for various viruses that rarely cause clinical symptoms in bats but are dangerous zoonotic pathogens, like Ebola or rabies virus. It has been hypothesized that the interferon system might play a key role in controlling viral replication in bats. We speculate that the interferon-induced Mx proteins might be key antiviral factors of bats and have coevolved with bat-borne viruses. This study evaluated for the first time a large set of bat Mx1 proteins spanning three major bat families for their antiviral potential, including activity against Ebola virus and bat influenza A-like virus, and we describe here their phylogenetic relationship, revealing patterns of positive selection that suggest a coevolution with viral pathogens. By understanding the molecular mechanisms of the innate resistance of bats against viral diseases, we might gain important insights into how to prevent and fight human zoonotic infections caused by bat-borne viruses.
Assuntos
Antivirais/metabolismo , Quirópteros/imunologia , Quirópteros/virologia , Proteínas de Resistência a Myxovirus/metabolismo , Vírus de RNA/imunologia , Animais , Clonagem Molecular , Evolução Molecular , Proteínas de Resistência a Myxovirus/genética , Seleção GenéticaRESUMO
A unique example of supramolecular polymerisation in water based on monomers with nanomolar affinities, which yield rod-like materials with extraordinarily high thermodynamic stability, yet of finite length, is reported. A small library of charge-neutral dendritic peptide amphiphiles was prepared, with a branched nonaphenylalanine-based core that was conjugated to hydrophilic dendrons of variable steric demand. Below a critical size of the dendron, the monomers assemble into nanorod-like polymers, whereas for larger dendritic side chains frustrated growth into near isotropic particles is observed. The supramolecular morphologies observed by electron microscopy, X-ray scattering and diffusion NMR spectroscopy studies are in agreement with the mechanistic insights obtained from fitting polymerisation profiles: non-cooperative isodesmic growth leads to degrees of polymerisation that match the experimentally determined nanorod contour lengths of close to 70 nm. The reported designs for aqueous self-assembly into well-defined anisotropic particles has promising potential for biomedical applications and the development of functional supramolecular biomaterials, with emerging evidence that anisotropic shapes in carrier design outperform conventional isotropic materials for targeted imaging and therapy.
RESUMO
While recombinant adenoviruses (rAds) are widely used in both laboratory and medical gene transfer, library-based applications using this vector platform are not readily available. Recently, we developed a new method, the CRISPR-Cas9 mediated in vivo terminal resolution aiding high-efficiency rescue of rAds from recombinant DNA. Here we report on a genetic workflow that allows construction of bacterial artificial chromosome-based rAd libraries reconstituted using highly efficient terminal resolution. We utilized frequent, pre-existing genomic sequences to allow the insertion of a selection marker, complementing two selected target sites into novel endonuclease recognition sites. In the second step, this selection marker is replaced with a transgene or mutation of interest via Gibson assembly. Our approach does not cause unwanted genomic off-target mutations while providing substantial flexibility for the site and nature of the genetic modification. This new genetic workflow, which we termed half site-directed fragment replacement (HFR) allows the introduction of more than 106 unique modifications into rAd encoding BACs using laboratory scale methodology. To demonstrate the power of HFR, we rescued barcoded viral vector libraries yielding a diversity of approximately 2.5 × 104 unique rAds per cm2 of transfected cell culture.
RESUMO
Orthomyxoviruses, such as influenza and thogotoviruses, are important human and animal pathogens. Their segmented viral RNA genomes are wrapped by viral nucleoproteins (NPs) into helical ribonucleoprotein complexes (RNPs). NP structures of several influenza viruses have been reported. However, there are still contradictory models of how orthomyxovirus RNPs are assembled. Here, we characterize the crystal structure of Thogoto virus (THOV) NP and found striking similarities to structures of influenza viral NPs, including a two-lobed domain architecture, a positively charged RNA-binding cleft, and a tail loop important for trimerization and viral transcription. A low-resolution cryo-electron tomography reconstruction of THOV RNPs elucidates a left-handed double helical assembly. By providing a model for RNP assembly of THOV, our study suggests conserved NP assembly and RNA encapsidation modes for thogoto- and influenza viruses.
Assuntos
Modelos Moleculares , RNA Viral , Ribonucleoproteínas , Thogotovirus , RNA Viral/metabolismo , RNA Viral/química , Thogotovirus/metabolismo , Thogotovirus/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Cristalografia por Raios X , Microscopia Crioeletrônica , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Ligação Proteica , Sítios de Ligação , Humanos , Montagem de VírusRESUMO
Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.
Assuntos
Quirópteros , Furões , Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Furões/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Quirópteros/virologia , Humanos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Camundongos , Filogenia , Influenza Humana/transmissão , Influenza Humana/virologia , Pulmão/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangueRESUMO
The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.
RESUMO
OBJECTIVE: Since April 2022, increasing numbers of monkeypox (MPX) cases have been reported outside endemic areas as part of an international outbreak. Our study shows aspects of clinical manifestations as well as epidemiological and virological features impacting transmission, for which only scarce data are available so far. METHODS: We present a descriptive study consisting of epidemiological, clinical and virological data of four patients with confirmed MPX diagnosis. Follow-up examinations included in-depth virological investigations, including MPX virus-specific quantitative PCR and virus isolation. RESULTS: Between 22 May 2022, and 21 June 2022, four patients with MPX were evaluated. The number of lesions ranged between one and more than 30, with asynchronous eruptions. The periorificial distribution of initial lesions together with the case histories strongly suggest human-to-human transmission during intimate contacts in sexual activities. None of the patients reported about memorable lesions on the skin of potential risk contacts. Virological sampling showed positive MPX virus-specific quantitative PCR results from swabs of the primary lesions (until day 22 after symptom onset), pharyngeal and anal mucosa, urine, seminal fluid, blood and samples of non-affected skin. Virus isolation was positive in 6/14 samples (lesional skin, anal and pharyngeal mucosa). One patient required inpatient treatment for bacterial superinfection; in another patient, three sexually transmitted co-infections were present. CONCLUSIONS: Our report demonstrates asynchronous multiple-site lesions of MPX with prolonged PCR positivity in mucosal swabs, swabs of non-affected skin, urine and seminal fluid. In addition, infectious virus was confirmed on lesional skin and mucosal swabs. The observed virological kinetics together with the suspected pre-symptomatic transmission may lead to effective and sustained human-to-human transmission, particularly in sexual networks. Preventive measures such as vaccination and post-exposure prophylaxis may become important for MPX control in vulnerable groups.
Assuntos
Mpox , Humanos , Mpox/diagnóstico , Mpox/epidemiologia , Monkeypox virus/genética , Pele , Reação em Cadeia da Polimerase/métodos , Alemanha/epidemiologiaRESUMO
Monoclonal antibodies (mAbs) directed against the spike of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective therapeutic options to combat infections in high-risk patients. Here, we report the adaptation of SARS-CoV-2 to the mAb cocktail REGN-COV in a kidney transplant patient with hypogammaglobulinemia. Following mAb treatment, the patient did not clear the infection. During viral persistence, SARS-CoV-2 acquired three novel spike mutations. Neutralization and mouse protection analyses demonstrate a complete viral escape from REGN-COV at the expense of ACE-2 binding. Final clearance of the virus occurred upon reduction of the immunosuppressive regimen and total IgG substitution. Serology suggests that the development of highly neutralizing IgM rather than IgG substitution aids clearance. Our findings emphasise that selection pressure by mAbs on SARS-CoV-2 can lead to development of escape variants in immunocompromised patients. Thus, modification of immunosuppressive therapy, if possible, might be preferable to control and clearance of the viral infection.