Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 54(23): 11200-8, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26574913

RESUMO

Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).

2.
J Phys Condens Matter ; 33(22)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607649

RESUMO

We report on the growth of Mn5Ge3thin films on Ge(001) substrates following two methods: solid phase epitaxy (SPE) and reactive deposition epitaxy (RDE). We have varied the thickness of the films, in order to study the magnetization and anisotropy evolution. A strongly enhanced magnetization of 1580 kA m-1, compared to 1200 ± 150 kA m-1for films grown on Ge(111), has been measured on ultrathin films of 5 nm grown by RDE. Thicker films exhibited magnetizations <750 kA m-1. The films grown by SPE also exhibit strong magnetization of 1490 kA m-1and a drop of magnetization by increasing the film thickness. The effective magnetic anisotropy exhibits a more complex behavior: increases on the SPE films and decreases on the RDE films while increasing the thickness of the films. Magnetostatic and interfacial anisotropies were considered and calculated. The results are discussed in terms of the growth methods and microstructure of the films.

3.
Materials (Basel) ; 6(11): 4967-4984, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28788370

RESUMO

A description of methods and computer programs for the prediction of "coupling properties" in axially-textured polycrystals is presented. Starting data are the single-crystal properties, texture and stereography. The validity and proper protocols for applying the Voigt, Reuss and Hill approximations to estimate coupling properties effective values is analyzed. Working algorithms for predicting mentioned averages are given. Bunge's symmetrized spherical harmonics expansion of orientation distribution functions, inverse pole figures and (single and polycrystals) physical properties is applied in all stages of the proposed methodology. The established mathematical route has been systematized in a working computer program. The discussion of piezoelectricity in a representative textured ferro-piezoelectric ceramic illustrates the application of the proposed methodology. Polycrystal coupling properties, predicted by the suggested route, are fairly close to experimentally measured ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA