Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Ecol ; 31(15): 4127-4145, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661299

RESUMO

Western lowland gorillas (Gorilla gorilla gorilla) are Critically Endangered and show continued population decline. Consequently, pressure is mounting to better understand their conservation threats and ecology. Gastrointestinal symbionts, such as bacterial and eukaryotic communities, are believed to play vital roles in the physiological landscape of the host. Gorillas host a broad spectrum of eucaryotes, so called parasites, with strongylid nematodes being particularly prevalent. While these communities are partially consistent, they are also shaped by various ecological factors, such as diet or habitat type. To investigate gastrointestinal symbionts of wild western lowland gorillas, we analysed 215 faecal samples from individuals in five distinct localities across the Congo Basin, using high-throughput sequencing techniques. We describe the gut bacterial microbiome and genetic diversity of strongylid communities, including strain-level identification of amplicon sequence variants (ASVs). We identified strongylid ASVs from eight genera and bacterial ASVs from 20 phyla. We compared these communities across localities, with reference to varying environmental factors among populations, finding differences in alpha diversity and community compositions of both gastrointestinal components. Moreover, we also investigated covariation between strongylid nematodes and the bacterial microbiome, finding correlations between strongylid taxa and Prevotellaceae and Rikenellaceae ASVs that were consistent across multiple localities. Our research highlights the complexity of the bacterial microbiome and strongylid communities in several gorilla populations and emphasizes potential interactions between these two symbiont communities. This study provides a framework for ongoing research into strongylid nematode diversity, and their interactions with the bacterial microbiome, among great apes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Bacteroidetes , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Gorilla gorilla/genética , Humanos
2.
Gen Comp Endocrinol ; 312: 113859, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34298054

RESUMO

Wildlife ecotourism can offer a source of revenue which benefits local development and conservation simultaneously. However, habituation of wildlife for ecotourism can cause long-term elevation of glucocorticoid hormones, which may suppress immune function and increase an animal's vulnerability to disease. We have previously shown that western lowland gorillas (Gorilla gorilla gorilla) undergoing habituation in Dzanga-Sangha Protected Areas, Central African Republic, have higher fecal glucocorticoid metabolite (FGCM) levels than both habituated and unhabituated gorillas. Here, we tested the relationship between FGCM levels and strongylid infections in the same gorillas. If high FGCM levels suppress the immune system, we predicted that FGCM levels will be positively associated with strongylid egg counts and that gorillas undergoing habituation will have the highest strongylid egg counts, relative to both habituated and unhabituated gorillas. We collected fecal samples over 12 months in two habituated gorilla groups, one group undergoing habituation and completely unhabituated gorillas. We established FGCM levels and fecal egg counts of Necator/Oesophagostomum spp. and Mammomonogamus sp. Controlling for seasonal variation and age-sex category in strongylid infections we found no significant relationship between FGCMs and Nectator/Oesophagostomum spp. or Mammomonogamus sp. egg counts in a within group comparison in either a habituated group or a group undergoing habituation. However, across groups, egg counts of Nectator/Oesophagostomum spp. were lowest in unhabituated animals and highest in the group undergoing habituation, matching the differences in FGCM levels among these gorilla groups. Our findings partially support the hypothesis that elevated glucocorticoids reduce a host's ability to control the extent of parasitic infections, and show the importance of non-invasive monitoring of endocrine function and parasite infection in individuals exposed to human pressure including habituation process and ecotourism.


Assuntos
Doenças dos Símios Antropoides , Parasitos , Doenças Parasitárias , Animais , Doenças dos Símios Antropoides/parasitologia , Fezes , Glucocorticoides , Gorilla gorilla
3.
BMC Genomics ; 20(1): 493, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31200636

RESUMO

BACKGROUND: Limited accessibility to intestinal epithelial tissue in wild animals and humans makes it challenging to study patterns of intestinal gene regulation, and hence to monitor physiological status and health in field conditions. To explore solutions to this limitation, we have used a noninvasive approach via fecal RNA-seq, for the quantification of gene expression markers in gastrointestinal cells of free-range primates and a forager human population. Thus, a combination of poly(A) mRNA enrichment and rRNA depletion methods was used in tandem with RNA-seq to quantify and compare gastrointestinal gene expression patterns in fecal samples of wild Gorilla gorilla gorilla (n = 9) and BaAka hunter-gatherers (n = 10) from The Dzanga Sangha Protected Areas, Central African Republic. RESULTS: Although only a small fraction (< 4.9%) of intestinal mRNA signals was recovered, the data was sufficient to detect significant functional differences between gorillas and humans, at the gene and pathway levels. These intestinal gene expression differences were specifically associated with metabolic and immune functions. Additionally, non-host RNA-seq reads were used to gain preliminary insights on the subjects' dietary habits, intestinal microbiomes, and infection prevalence, via identification of fungi, nematode, arthropod and plant RNA. CONCLUSIONS: Overall, the results suggest that fecal RNA-seq, targeting gastrointestinal epithelial cells can be used to evaluate primate intestinal physiology and gut gene regulation, in samples obtained in challenging conditions in situ. The approach used herein may be useful to obtain information on primate intestinal health, while revealing preliminary insights into foraging ecology, microbiome, and diet.


Assuntos
Fezes , Trato Gastrointestinal/metabolismo , Perfilação da Expressão Gênica , Gorilla gorilla/genética , RNA-Seq , Animais , Humanos , Poli A/genética , RNA Mensageiro/genética
4.
Mol Ecol ; 28(21): 4786-4797, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573713

RESUMO

The close phylogenetic relationship between humans and nonhuman primates (NHPs) can result in a high potential for pathogen exchange. In recent decades, NHP and human interactions have become more frequent due to increasing habitat encroachment and ecotourism. Strongylid communities, which include members of several genera, are typically found in NHPs. Using optimized high-throughput sequencing for strain-level identification of primate strongylids, we studied the structure of strongylid communities in NHPs and humans co-habiting a tropical forest ecosystem in the Central African Republic. General taxonomic assignment of 85 ITS-2 haplotypes indicated that the studied primates harbour at least nine genera of strongylid nematodes, with Oesophagostomum and Necator being the most prevalent. We detected both host-specific and shared strongylid haplotypes. Skin-penetrating Necator gorillaehaplotypes were shared between humans and gorillas but Necator americanus were much more restricted to humans. Strongylid communities of local hunter-gatherers employed as trackers were more similar to those of gorillas compared to their relatives, who spent more time in villages. This was due to lower abundance of human-origin N. americanus in both gorillas and trackers. Habituated gorillas or those under habituation did not show larger overlap of strongylids with humans compared to unhabituated. We concluded that the occurrence of the human-specific strongylids in gorillas does not increase with direct contact between gorillas and humans due to the habituation. Overall, our results indicate that the degree of habitat sharing between hosts, together with mode of parasite transmission, are important factors for parasite spillover among primates.


Assuntos
Variação Genética/genética , Primatas/genética , Simpatria/genética , Animais , Ecossistema , Gorilla gorilla/genética , Humanos , Necator/genética , Oesophagostomum/genética , Filogenia
5.
Parasitol Res ; 117(1): 345, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218441

RESUMO

Affiliation of Klára J. Petrzelková was incorrectly assigned as 2, 9, 10 in the original version of this article when in fact it should have been 3, 9, 10. Correct affiliations are presented here.

6.
Parasitol Res ; 116(12): 3401-3410, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29116455

RESUMO

Increased anthropogenic activity can result in parasite exchanges and/or general changes in parasite communities, imposing a health risk to great apes. We studied protist and helminth parasites of wild western lowland gorilla groups in different levels of habituation, alongside humans inhabiting Dzanga-Sangha Protected Areas in the Central African Republic. Faeces were collected yearly during November and December from 2007 to 2010 and monthly from November 2010 to October 2011. Protist and helminth infections were compared among gorilla groups habituated, under habituation and unhabituated, and the effect of host traits and seasonality was evaluated. Zoonotic potential of parasites found in humans was assessed. No significant differences in clinically important parasites among the groups in different stages of habituation were found, except for Entamoeba spp. However, humans were infected with four taxa which may overlap with taxa found in gorillas. Females were less infected with spirurids, and adults had higher intensities of infection of Mammomonogamus sp. We found seasonal differences in the prevalence of several parasite taxa, but most importantly, the intensity of infection of unidentified strongylids was higher in the dry season. This study highlights that habituation may not necessarily pose a greater risk of protist and helminth infections in gorilla groups.


Assuntos
Doenças dos Símios Antropoides/parasitologia , Entamoeba/isolamento & purificação , Gorilla gorilla/parasitologia , Helmintíase Animal/parasitologia , Strongyloidea/isolamento & purificação , Animais , República Centro-Africana , Fezes/parasitologia , Feminino , Humanos , Filogenia , Estações do Ano , Strongyloidea/classificação
7.
iScience ; 27(4): 109437, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38523787

RESUMO

Lethal intergroup encounters occur in many species because of sexual selection. While documented in mountain gorillas, they are absent in western gorillas as, instead, it is predicted by their higher feeding (frugivory) and mate competition (single-vs. multi-male groups). We investigate whether the injuries on three dead silverbacks and one adult female from four groups of western gorillas in the Central African Republic, resulted from interactions with gorillas or leopards. We identified two distinct injury patterns caused by gorillas (isolated lacerations, round wounds) and leopards (punctures clustered on head/neck) by analyzing injuries caused by mountain gorillas and leopards to gorillas and non-gorilla species, respectively. The western gorilla injury pattern is similar to that of mountain gorillas suggesting that lethal encounters occur, albeit infrequently, as predicted by sexual selection in a one-male society. While sexual dimorphism and polygynous sociality favored the evolution of violent encounters, multiple males in groups may influence their frequency.

8.
Am J Biol Anthropol ; 182(2): 210-223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37483018

RESUMO

OBJECTIVES: Insectivory likely contributed to survival of early humans in diverse conditions and influenced human cognitive evolution through the need to develop harvesting tools. In living primates, insectivory is a widespread behavior and frequently seasonal, although previous studies do not always agree on reasons behind this. Since western gorillas (Gorilla gorilla) diet is largely affected by seasonal variation in fruit availability, we aimed to test three non-mutually exclusive hypotheses (habitat use, frugivory and rainfall) to explain seasonality in termite feeding across age/sex classes in three habituated groups (Nindividuals = 27) in Central Africa. MATERIALS AND METHODS: We used 4 years of ranging, scan and continuous focal sampling records of gorillas (Nranging days = 883, Nscans = 12,384; Nhours = 891) in addition to 116 transects recording vegetation and termite mound distribution. RESULTS: Depending on the age/sex classes, we found support for all three hypotheses. Time spent in termite-rich vegetation positively impacted termite consumption in all age/sex classes, but subadults. Lengthier travels increased termite feeding in females but decreased it in subadults. Frugivory decreased termite consumption in adults. Daily rainfall had a positive effect on termite feeding and foraging in silverbacks and juveniles, but a negative effect in subadults. For females, rainfall had a positive effect on termite feeding, but a negative effect for termite foraging. DISCUSSION: In great apes, seasonal insectivory seems to be multifactorial and primarily opportunistic with important differences among age/sex classes. While insectivory has potentials to be traditional, it likely played a crucial role during primate evolution (including ours), allowing diet flexibility in changing environments.


Assuntos
Gorilla gorilla , Isópteros , Animais , Feminino , Humanos , Estações do Ano , Dieta , Frutas , África Central
9.
Sci Rep ; 12(1): 9569, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688872

RESUMO

The ecological-constraints model posits that living in larger groups is associated to higher travel costs and reduced nutritional intake due to within-group feeding competition setting upper group size limits. While this is critical for frugivorous mammals, the model is less ubiquitous for folivores who feed on more abundant and evenly distributed food. The seasonally frugivorous diet of western gorillas (Gorilla gorilla) provides the opportunity to study the ecological-constraints model in the largest primate species. We investigated how two groups of western gorillas of differing sizes (N = 9, N = 15) in Central African Republic, responded to seasonal variation in fruit availability in terms of activity and diet. We used continuous focal animal sampling during periods of high (July-August 2011) and low (October 2011-January 2012) fruit availability, measured by monthly phenological scores. While diet diversity, resting and moving time did not differ between groups, overall the smaller group spent more time feeding than the larger group although this became less evident when fruit was more available. The smaller group was more frugivorous than the larger group. However, the larger group increased more steeply fruit consumption when fruit was more available, and incorporated more insects, young leaves and bark when fruit was less available, when compared to the smaller group. Up to a certain limit, the flexibility of large, seasonal frugivores to survive on a more folivorous diet may buffer the upper limit group size, suggesting deviation from the ecological-constraints model as in some folivores.


Assuntos
Dieta , Gorilla gorilla , Animais , República Centro-Africana , Comportamento Alimentar , Frutas , Mamíferos , Estações do Ano
10.
NPJ Biofilms Microbiomes ; 8(1): 12, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301322

RESUMO

The gut microbiome of primates is known to be influenced by both host genetic background and subsistence strategy. However, these inferences have been made mainly based on adaptations in bacterial composition - the bacteriome and have commonly overlooked the fungal fraction - the mycobiome. To further understand the factors that shape the gut mycobiome of primates and mycobiome-bacteriome interactions, we sequenced 16 S rRNA and ITS2 markers in fecal samples of four different nonhuman primate species and three human groups under different subsistence patterns (n = 149). The results show that gut mycobiome composition in primates is still largely unknown but highly plastic and weakly structured by primate phylogeny, compared with the bacteriome. We find significant gut mycobiome overlap between captive apes and human populations living under industrialized subsistence contexts; this is in contrast with contemporary hunter-gatherers and agriculturalists, who share more mycobiome traits with diverse wild-ranging nonhuman primates. In addition, mycobiome-bacteriome interactions were specific to each population, revealing that individual, lifestyle and intrinsic ecological factors affect structural correspondence, number, and kind of interactions between gut bacteria and fungi in primates. Our findings indicate a dominant effect of ecological niche, environmental factors, and diet over the phylogenetic background of the host, in shaping gut mycobiome composition and mycobiome-bacteriome interactions in primates.


Assuntos
Microbioma Gastrointestinal , Micobioma , Animais , Bactérias/genética , Filogenia , Primatas
11.
Ecol Evol ; 11(12): 7634-7646, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188840

RESUMO

Characterizing animal dispersal patterns and the rational behind individuals' transfer choices is a long-standing question of interest in evolutionary biology. In wild western gorillas (Gorilla gorilla), a one-male polygynous species, previous genetic findings suggested that, when dispersing, females might favor groups with female kin to promote cooperation, resulting in higher-than-expected within-group female relatedness. The extent of male dispersal remains unclear with studies showing conflicting results. To investigate male and female dispersal patterns and extragroup paternity, we analyzed long-term field observations, including female spatial proximity data, together with genetic data (10 autosomal microsatellites) on individuals from a unique set of four habituated western gorilla groups, and four additional extragroup males (49 individuals in total). The majority of offspring (25 of 27) were sired by the group male. For two offspring, evidence for extragroup paternity was found. Contrarily to previous findings, adult females were not significantly more related within groups than across groups. Consistently, adult female relatedness within groups did not correlate with their spatial proximity inferred from behavioral data. Adult females were similarly related to adult males from their group than from other groups. Using R ST statistics, we found significant genetic structure and a pattern of isolation by distance, indicating limited dispersal in this species. Comparing relatedness among females and among males revealed that males disperse farer than females, as expected in a polygamous species. Our study on habituated western gorillas shed light on the dispersal dynamics and reproductive behavior of this polygynous species and challenge some of the previous results based on unhabituated groups.

12.
mSystems ; 5(6)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33361321

RESUMO

Compared with urban-industrial populations, small-scale human communities worldwide share a significant number of gut microbiome traits with nonhuman primates. This overlap is thought to be driven by analogous dietary triggers; however, the ecological and functional bases of this similarity are not fully understood. To start addressing this issue, fecal metagenomes of BaAka hunter-gatherers and traditional Bantu agriculturalists from the Central African Republic were profiled and compared with those of a sympatric western lowland gorilla group (Gorilla gorilla gorilla) across two seasons of variable dietary intake. Results show that gorilla gut microbiomes shared similar functional traits with each human group, depending on seasonal dietary behavior. Specifically, parallel microbiome traits were observed between hunter-gatherers and gorillas when the latter consumed more structural polysaccharides during dry seasons, while small-scale agriculturalist and gorilla microbiomes showed significant functional overlap when gorillas consumed more seasonal ripe fruit during wet seasons. Notably, dominance of microbial transporters, transduction systems, and gut xenobiotic metabolism was observed in association with traditional agriculture and energy-dense diets in gorillas at the expense of a functional microbiome repertoire capable of metabolizing more complex polysaccharides. Differential abundance of bacterial taxa that typically distinguish traditional from industrialized human populations (e.g., Prevotella spp.) was also recapitulated in the human and gorilla groups studied, possibly reflecting the degree of polysaccharide complexity included in each group's dietary niche. These results show conserved functional gut microbiome adaptations to analogous diets in small-scale human populations and nonhuman primates, highlighting the role of plant dietary polysaccharides and diverse environmental exposures in this convergence.IMPORTANCE The results of this study highlight parallel gut microbiome traits in human and nonhuman primates, depending on subsistence strategy. Although these similarities have been reported before, the functional and ecological bases of this convergence are not fully understood. Here, we show that this parallelism is, in part, likely modulated by the complexity of plant carbohydrates consumed and by exposures to diverse xenobiotics of natural and artificial origin. Furthermore, we discuss how divergence from these parallel microbiome traits is typically associated with adverse health outcomes in human populations living under culturally westernized subsistence patterns. This is important information as we trace the specific dietary and environmental triggers associated with the loss and gain of microbial functions as humans adapt to various dietary niches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA