Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 30(9): 2009-2024, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33655552

RESUMO

Coral reefs are experiencing unprecedented declines in health on a global scale leading to severe reductions in coral cover. One major cause of this decline is increasing sea surface temperature. However, conspecific colonies separated by even small spatial distances appear to show varying responses to this global stressor. One factor contributing to differential responses to heat stress is variability in the coral's micro-environment, such as the amount of water flow a coral experiences. High flow provides corals with a variety of health benefits, including heat stress mitigation. Here, we investigate how water flow affects coral gene expression and provides resilience to increasing temperatures. We examined host and photosymbiont gene expression of Acropora cf. pulchra colonies in discrete in situ flow environments during a natural bleaching event. In addition, we conducted controlled ex situ tank experiments where we exposed A. cf. pulchra to different flow regimes and acute heat stress. Notably, we observed distinct flow-driven transcriptomic signatures related to energy expenditure, growth, heterotrophy and a healthy coral host-photosymbiont relationship. We also observed disparate transcriptomic responses during bleaching recovery between the high- and low-flow sites. Additionally, corals exposed to high flow showed "frontloading" of specific heat-stress-related genes such as heat shock proteins, antioxidant enzymes, genes involved in apoptosis regulation, innate immunity and cell adhesion. We posit that frontloading is a result of increased oxidative metabolism generated by the increased water movement. Gene frontloading may at least partially explain the observation that colonies in high-flow environments show higher survival and/or faster recovery in response to bleaching events.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Resposta ao Choque Térmico/genética , Simbiose , Temperatura
2.
Proc Biol Sci ; 283(1840)2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733543

RESUMO

Larvae of intertidal species develop at sea and must return to adult habitats to replenish populations. Similarly, nutrients, detritus and plankton provide important subsidies spurring growth and reproduction of macroalgae and filter-feeding invertebrates that form the foundation of intertidal communities. Together, these factors determine the density and intensity of interactions among community members. We hypothesized that spatial variation in surfzone hydrodynamics affects the delivery of plankton subsidies. We compared entire zooplankton communities inside and outside the surf zone daily while monitoring physical conditions for one month each at two shores with different surfzone characteristics. Opposite cross-shore distributions of larvae and other zooplankters occurred at the two sites: zooplankton was much more abundant inside the mildly sloping dissipative surf zone (DSZ) with rip currents and was more abundant outside the steep reflective surf zone (RSZ). Biophysical numerical simulations demonstrated that zooplankters were concentrated in rip channels of the DSZ and were mostly unable to enter the RSZ, indicating the hydrodynamic processes behind the observed spatial variation of zooplankters in the surf zone. Differences in the concentration of larvae and other zooplankters between the inner shelf and surf zone may be an underappreciated, key determinant of spatial variation in inshore communities.


Assuntos
Ecossistema , Invertebrados , Plâncton , Alga Marinha , Movimentos da Água , Animais , Cadeia Alimentar , Hidrodinâmica , Larva , Oceanos e Mares , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA