Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(13): 7724-7734, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32870215

RESUMO

Two-dimensional hydrogen boride (HB) sheets were recently demonstrated to act as a solid acid catalyst in their hydrogen-deficient state. However, both the active sites and the mechanism of the catalytic process require further elucidation. In this study, we analyzed the conversion of ethanol adsorbed on HB sheets under vacuum during heating using in situ Fourier transform infrared (FT-IR) absorption spectroscopy with isotope labelling. Up to 450 K, the FT-IR peak associated with the OH group of the adsorbed ethanol molecule disappeared from the spectrum, which was attributed to a dehydration reaction with a hydrogen atom from the HB sheet, resulting in the formation of an ethyl species. At temperatures above 440 K, the number of BD bonds markedly increased in CD3CH2OH, compared to CH3CD2OH; the temperature dependence of the formation rate of BD bonds was similar to that of the dehydration reaction rate of ethanol on HB sheets under steady-state conditions. The rate-determining step of the dehydration of ethanol on HB was thus ascribed to the dehydrogenation of the methyl group of the ethyl species on the HB sheets, followed by the immediate desorption of ethylene. These results show that the catalytic ethanol dehydration process on HB involves the hydrogen atoms of the HB sheets. The obtained mechanistic insights are expected to promote the practical application of HB sheets as catalysts.

2.
J Am Chem Soc ; 139(39): 13761-13769, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28926230

RESUMO

Two-dimensional (2D) materials are promising for applications in a wide range of fields because of their unique properties. Hydrogen boride sheets, a new 2D material recently predicted from theory, exhibit intriguing electronic and mechanical properties as well as hydrogen storage capacity. Here, we report the experimental realization of 2D hydrogen boride sheets with an empirical formula of H1B1, produced by exfoliation and complete ion-exchange between protons and magnesium cations in magnesium diboride (MgB2) with an average yield of 42.3% at room temperature. The sheets feature an sp2-bonded boron planar structure without any long-range order. A hexagonal boron network with bridge hydrogens is suggested as the possible local structure, where the absence of long-range order was ascribed to the presence of three different anisotropic domains originating from the 2-fold symmetry of the hydrogen positions against the 6-fold symmetry of the boron networks, based on X-ray diffraction, X-ray atomic pair distribution functions, electron diffraction, transmission electron microscopy, photo absorption, core-level binding energy data, infrared absorption, electron energy loss spectroscopy, and density functional theory calculations. The established cation-exchange method for metal diboride opens new avenues for the mass production of several types of boron-based 2D materials by countercation selection and functionalization.

3.
ACS Omega ; 4(9): 14100-14104, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31497729

RESUMO

Hydrogen boride (HB) or hydrogenated borophene sheets are recently realized two-dimensional materials that are composed of only two light elements, boron and hydrogen. However, their catalytic activity has not been experimentally analyzed. Herein, we report the catalytic activity of HB sheets in ethanol reforming. HB sheets catalyze the conversion of ethanol to ethylene and water above 493 K with high selectivity, independent of the contact time, and with an apparent activation energy of 102.8 ± 5.5 kJ/mol. Hence, we identify that HB sheets act as solid-acid catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA