Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Biol Chem ; 295(34): 12247-12261, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32647012

RESUMO

PCBP1, a member of the poly(C)-binding protein (PCBP) family, has the capability of binding heavily oxidized RNA and therefore participates in the cellular response to oxidative conditions, helping to induce apoptosis. There are four other members of this family, PCBP2, PCBP3, PCBP4, and hnRNPK, but it is not known whether they play similar roles. To learn more, we first tested their affinity for an RNA strand carrying two 8-oxoguanine (8-oxoG) residues at sites located in close proximity to each other, representative of a heavily oxidized strand or RNA with one 8-oxoG or none. Among them, only PCBP2 exhibited highly selective binding to RNA carrying two 8-oxoG residues similar to that observed with PCBP1. In contrast, PCBP3, PCBP4, and hnRNPK bound RNA with or without 8-oxoG modifications and exhibited slightly increased binding to the former. Mutations in conserved RNA-binding domains of PCBP2 disrupted the specific interaction with heavily oxidized RNA. We next tested PCBP2 activity in cells. Compared with WT HeLa S3 cells, PCBP2-KO cells established by gene editing exhibited increased apoptosis with increased caspase-3 activity and PARP1 cleavage under oxidative conditions, which were suppressed by the expression of WT PCBP2 but not one of the mutants lacking binding activity. In contrast, PCBP1-KO cells exhibited reduced apoptosis with much less caspase-3 activity and PARP cleavage than WT cells. Our results indicate that PCBP2 as well as PCBP1 bind heavily oxidized RNA; however, the former may counteract PCBP1 to suppress apoptosis under oxidative conditions.


Assuntos
Apoptose , Proteínas de Ligação a DNA/metabolismo , Guanina/análogos & derivados , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Proteínas de Ligação a DNA/genética , Guanina/metabolismo , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Células MCF-7 , Oxirredução , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA/genética , Proteínas de Ligação a RNA/genética
2.
Bioorg Med Chem ; 51: 116498, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794000

RESUMO

Heptapeptide SFLLRNP is a receptor-tethered ligand of protease-activated receptor 1 (PAR-1), and its Phe at position 2 is essential for the aggregation of human platelets. To validate the structural elements of the Phe-phenyl group in receptor activation, we have synthesized a complete set of S/Phe/LLRNP peptides comprising different series of fluorophenylalanine isomers (Fn)Phe, where n = 1, 2, 3, and 5. Phe-2-phenyl was strongly suggested to be involved in the edge-to-face CH/π interaction with the receptor aromatic group. In the present study, to prove this receptor interaction definitively, we synthesized another series of peptide analogs containing (F4)Phe-isomers, with the phenyl group of each isomer possessing only one hydrogen atom at the ortho, meta, or para position. When the peptides were assayed for their platelet aggregation activity, S/(2,3,4,6-F4)Phe/LLRNP and S/(2,3,4,5-F4)Phe/LLRNP exhibited noticeable activity (34% and 6% intensities of the native peptide, respectively), whereas S/(2,3,5,6-F4)Phe/LLRNP was completely inactive. The results indicated that, at the ortho and meta positions but not at the para position, benzene-hydrogen atoms are required for the CH/π interaction to activate the receptor. The results provided a decisive evidence of the molecular recognition property of Phe, the phenyl benzene-hydrogen atom of which participates directly in the interaction with the receptor aromatic π plane.


Assuntos
Fragmentos de Peptídeos/farmacologia , Fenilalanina/farmacologia , Receptor PAR-1/antagonistas & inibidores , Relação Dose-Resposta a Droga , Voluntários Saudáveis , Humanos , Ligantes , Estrutura Molecular , Fragmentos de Peptídeos/química , Fenilalanina/química , Agregação Plaquetária/efeitos dos fármacos , Receptor PAR-1/metabolismo , Relação Estrutura-Atividade
3.
Mol Pain ; 15: 1744806918824243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799694

RESUMO

To reveal cellular mechanisms for antinociception produced by clinically used tramadol, we investigated the effect of its metabolite O-desmethyltramadol (M1) on glutamatergic excitatory transmission in spinal dorsal horn lamina II (substantia gelatinosa; SG) neurons. The whole-cell patch-clamp technique was applied at a holding potential of -70 mV to SG neurons of an adult rat spinal cord slice with an attached dorsal root. Under the condition where a postsynaptic action of M1 was inhibited, M1 superfused for 2 min reduced the frequency of spontaneous excitatory postsynaptic current in a manner sensitive to a µ-opioid receptor antagonist CTAP; its amplitude and also a response of SG neurons to bath-applied AMPA were hardly affected. The presynaptic effect of M1 was different from that of noradrenaline or serotonin which was examined in the same neuron. M1 also reduced by almost the same extent the peak amplitudes of monosynaptic primary-afferent Aδ-fiber and C-fiber excitatory postsynaptic currents evoked by stimulating the dorsal root. These actions of M1 persisted for >10 min after its washout. These results indicate that M1 inhibits the quantal release of L-glutamate from nerve terminals by activating µ-opioid but not noradrenaline and serotonin receptors; this inhibition is comparable in extent between monosynaptic primary-afferent Aδ-fiber and C-fiber transmissions. Considering that the SG plays a pivotal role in regulating nociceptive transmission, the present findings could contribute to at least a part of the inhibitory action of tramadol on nociceptive transmission together with its hyperpolarizing effect as reported previously.


Assuntos
Analgésicos Opioides/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Substância Gelatinosa/citologia , Tramadol/análogos & derivados , Animais , Interações Medicamentosas , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Masculino , Antagonistas de Entorpecentes/farmacologia , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Neurônios/fisiologia , Norepinefrina/farmacologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Ratos , Serotonina/farmacologia , Tramadol/farmacologia
4.
Biochem Biophys Res Commun ; 501(1): 100-105, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29705705

RESUMO

Hypothalamic neuropeptides, orexins A and B, differently inhibit nociceptive behavior. This difference is possibly due to a distinction between orexins A and B in modulating synaptic transmission in spinal substantia gelatinosa (SG) neurons that play a pivotal role in regulating nociceptive transmission. Although we previously reported a modulatory action of orexin B on synaptic transmission in adult rat SG neurons, it has not been fully examined how the transmission is affected by orexin A. The present study examined the effects of orexin A on spontaneous excitatory and inhibitory transmission in SG neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. Like orexin B, orexin A produced an inward current at -70 mV and/or increased the frequency of spontaneous excitatory postsynaptic current without changing its amplitude. Half-maximal effective concentration values for their effects were 0.0045 and 0.030 µM, respectively; the former value was four-fold smaller than that of orexin B while the latter value was comparable to that of orexin B. Orexin A enhanced not only glycinergic but also GABAergic transmission, although only glycinergic transmission was facilitated by orexin B in the majority of neurons tested. Orexin A activities were inhibited by an orexin-1 receptor antagonist (SB334867) but not an orexin-2 receptor antagonist (JNJ10397049), as different from orexin B whose activation was depressed by JNJ10397049 but not SB334867. These results indicate that orexin A has a different action from orexin B in SG neurons in efficacy for inward current production and in GABAergic transmission enhancement, possibly owing to orexin-1 but not orexin-2 receptor activation. This difference could contribute to at least a part of the distinction between orexins A and B in antinociceptive effects.


Assuntos
Orexinas/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Substância Gelatinosa/fisiologia , Animais , Benzoxazóis/farmacologia , Dioxanos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Glicina/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Naftiridinas , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores de Orexina/efeitos dos fármacos , Técnicas de Patch-Clamp , Compostos de Fenilureia/farmacologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/farmacologia
6.
J Neurochem ; 136(4): 764-777, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26578070

RESUMO

Although transient receptor potential (TRP) channels expressed in the spinal substantia gelatinosa play a role in modulating nociceptive transmission, their properties have not been fully examined yet. In order to address this issue, the effects of 1,8-cineole and its stereoisomer 1,4-cineole on excitatory transmission were examined by applying the whole-cell patch-clamp technique to substantia gelatinosa neurons in adult rat spinal cord slices. Miniature excitatory postsynaptic current frequency was increased by 1,8- and 1,4-cineole. The cineole activities were repeated and resistant to voltage-gated Na+ -channel blocker tetrodotoxin. The 1,8-cineole activity was inhibited by TRP ankyrin-1 (TRPA1) antagonists (HC-030031 and mecamylamine) but not TRP vanilloid-1 (TRPV1) antagonists (capsazepine and SB-366791), whereas the 1,4-cineole activity was depressed by the TRPV1 but not TRPA1 antagonists. Although 1,8- and 1,4-cineole reportedly activate TRP melastatin-8 (TRPM8) channels, their activities were unaffected by TRPM8 antagonist 4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide. Monosynaptically evoked C-fiber, but not Aδ-fiber excitatory postsynaptic current amplitude, was reduced by 1,8- and 1,4-cineole. These results indicate that 1,8- and 1,4-cineole increase spontaneous l-glutamate release from nerve terminals by activating TRPA1 and TRPV1 channels, respectively, while inhibiting C-fiber but not Aδ-fiber evoked l-glutamate release. This difference between 1,8- and 1,4-cineole may serve to know the properties of TRP channels located in the central terminals of primary-afferent neurons. The spinal dorsal horn lamina II (substantia gelatinosa; SG) plays a pivotal role in regulating nociceptive transmission from the periphery. We found out in the SG that 1,4- and 1,8-cineole activate TRPV1 and TRPA1 channels, respectively, located in primary-afferent, possibly C-fiber, central terminals. This difference may serve to know the properties of TRP channels expressed in the central terminals.

7.
Biochem Biophys Res Commun ; 459(3): 498-503, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25747716

RESUMO

Transient receptor potential (TRP) channels in the spinal dorsal horn lamina II (substantia gelatinosa; SG), which are involved in the modulation of nociceptive transmission, have not yet been fully examined in property. Activation of the TRP channels by various plant-derived chemicals results in an increase in the spontaneous release of L-glutamate onto the SG neurons. We examined the effects of a monoterpene ketone (-)-carvone (contained in spearmint) and its stereoisomer (+)-carvone (in caraway) on glutamatergic spontaneous excitatory transmission in SG neurons of adult rat spinal cord slices by using the whole-cell patch-clamp technique. (-)-Carvone and (+)-carvone increased the frequency of spontaneous excitatory postsynaptic current (sEPSC) in a reversible and concentration-dependent manner with a small increase in its amplitude. Half-maximal effective concentrations of (-)-carvone and (+)-carvone in increasing sEPSC frequency were 0.70 mM and 0.72 mM, respectively. The (-)-carvone but not (+)-carvone activity was inhibited by a TRPV1 antagonist capsazepine. On the other hand, the (+)-carvone but not (-)-carvone activity was inhibited by a TRPA1 antagonist HC-030031. These results indicate that (-)-carvone and (+)-carvone activate TRPV1 and TRPA1 channels, respectively, resulting in an increase in spontaneous L-glutamate release onto SG neurons, with almost the same efficacy. Such a difference in TRP activation between the stereoisomers may serve to know the properties of TRP channels in the SG.


Assuntos
Ácido Glutâmico/metabolismo , Monoterpenos/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Substância Gelatinosa/fisiologia , Canais de Potencial de Receptor Transitório/agonistas , Acetanilidas/farmacologia , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Monoterpenos Cicloexânicos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Monoterpenos/química , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Purinas/farmacologia , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Substância Gelatinosa/citologia , Transmissão Sináptica/efeitos dos fármacos , Canal de Cátion TRPA1 , Canais de Cátion TRPC/agonistas , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/antagonistas & inibidores
8.
J Neurophysiol ; 111(5): 991-1007, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335211

RESUMO

Cellular mechanisms for antinociception produced by oxytocin in the spinal dorsal horn have not yet been investigated thoroughly. We examined how oxytocin affects synaptic transmission in substantia gelatinosa neurons, which play a pivotal role in regulating nociceptive transmission, by applying the whole-cell patch-clamp technique to the substantia gelatinosa neurons of adult rat spinal cord slices. Bath-applied oxytocin did not affect glutamatergic spontaneous, monosynaptically-evoked primary-afferent Aδ-fiber and C-fiber excitatory transmissions. On the other hand, oxytocin produced an inward current at -70 mV and enhanced GABAergic and glycinergic spontaneous inhibitory transmissions. These activities were repeated with a slow recovery from desensitization, concentration-dependent and mimicked by oxytocin-receptor agonist. The oxytocin current was inhibited by oxytocin-receptor antagonist, intracellular GDPßS, U-73122, 2-aminoethoxydiphenyl borate, but not dantrolene, chelerythrine, dibutyryl cyclic-AMP, CNQX, Ca(2+)-free and tetrodotoxin, while the spontaneous inhibitory transmission enhancements were depressed by tetrodotoxin. Current-voltage relation for the oxytocin current reversed at negative potentials more than the equilibrium potential for K(+), or around 0 mV. The oxytocin current was depressed in high-K(+), low-Na(+) or Ba(2+)-containing solution. Vasopressin V1A-receptor antagonist inhibited the oxytocin current, but there was no correlation in amplitude between a vasopressin-receptor agonist [Arg(8)]vasopressin and oxytocin responses. It is concluded that oxytocin produces a membrane depolarization mediated by oxytocin but not vasopressin-V1A receptors, which increases neuronal activity, resulting in the enhancement of inhibitory transmission, a possible mechanism for antinociception. This depolarization is due to a change in membrane permeabilities to K(+) and/or Na(+), which is possibly mediated by phospholipase C and inositol 1,4,5-triphosphate-induced Ca(2+)-release.


Assuntos
Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ocitocina/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Substância Gelatinosa/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Oral Biosci ; 66(2): 420-429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490561

RESUMO

OBJECTIVE: This study aimed to determine the effects of traditional Japanese (Kampo) medicines used to treat oral mucositis on nerve conduction. METHODS: The effects of Kampo medicines, crude drugs, and chemical compounds on compound action potentials (CAPs) were analyzed using extracellular recordings in frog sciatic nerves. RESULTS: Among the Kampo medicines, inchinkoto demonstrated the most significant reduction in CAP amplitude, with a half-maximal inhibitory concentration (IC50) of 5.4 mg/mL. Hangeshashinto, shosaikoto, hochuekkito, and juzentaihoto also showed a significant reduction. Regarding inchinkoto, Artemisiae Capillari Spica (artemisia) was the most effective crude drug, with an IC50 of 4.2 mg/mL for CAP amplitude reduction, whereas Gardeniae Fructus (gardenia) exerted no significant effect. However, the combined use of artemisia and gardenia reduced the CAP amplitude more effectively than artemisia alone, indicating a synergistic interaction. The chemical ingredient eugenol from artemisia administered at 1 and 3 mmol/L reduced CAP amplitude, whereas other chemical ingredients administered at 0.1 and 1 mmol/L had no significant effects. CONCLUSIONS: Inchinkoto exhibited the most effective reduction in CAP amplitude in the sciatic nerve of frogs, primarily through the action of artemisia, with potential synergistic interaction between artemisia and gardenia.


Assuntos
Potenciais de Ação , Medicina Kampo , Ranidae , Nervo Isquiático , Animais , Potenciais de Ação/efeitos dos fármacos , Artemisia/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Nervo Isquiático/efeitos dos fármacos , Estomatite/tratamento farmacológico
10.
J Neurophysiol ; 110(3): 658-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23657286

RESUMO

Transient receptor potential (TRP) channels are thought to play a role in regulating nociceptive transmission to spinal substantia gelatinosa (SG) neurons. It remains to be unveiled whether the TRP channels in the central nervous system are different in property from those involved in receiving nociceptive stimuli in the peripheral nervous system. We examined the effect of the vanilloid compound zingerone, which activates TRPV1 channels in the cell body of a primary afferent neuron, on glutamatergic excitatory transmission in the SG neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. Bath-applied zingerone reversibly and concentration-dependently increased spontaneous excitatory postsynaptic current (EPSC) frequency. This effect was accompanied by an inward current at -70 mV that was resistant to glutamate receptor antagonists. These zingerone effects were repeated and persisted in Na(+)-channel blocker tetrodotoxin-, La(3+)-, or IP3-induced Ca(2+)-release inhibitor 2-aminoethoxydiphenyl borate-containing or Ca(2+)-free Krebs solution. Zingerone activity was resistant to the selective TRPV1 antagonist capsazepine but sensitive to the nonselective TRP antagonist ruthenium red, the TRPA1 antagonist HC-030031, and the Ca(2+)-induced Ca(2+)-release inhibitor dantrolene. TRPA1 agonist allyl isothiocyanate but not capsaicin inhibited the facilitatory effect of zingerone. On the other hand, zingerone reduced monosynaptically evoked EPSC amplitudes, as did TRPA1 agonists. Like allyl isothiocyanate, zingerone enhanced GABAergic spontaneous inhibitory transmission in a manner sensitive to tetrodotoxin. We conclude that zingerone presynaptically facilitates spontaneous excitatory transmission, probably through Ca(2+)-induced Ca(2+)-release mechanisms, and produces a membrane depolarization in SG neurons by activating TRPA1 but not TRPV1 channels.


Assuntos
Guaiacol/análogos & derivados , Neurônios/efeitos dos fármacos , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Canais de Cátion TRPC/agonistas , Canais de Cátion TRPV/agonistas , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Guaiacol/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Substância Gelatinosa/fisiologia , Canal de Cátion TRPA1
11.
Mol Pain ; 9: 16, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23537341

RESUMO

BACKGROUND: Proinflammatory cytokine interleukin-1ß (IL-1ß) released from spinal microglia plays an important role in the maintenance of acute and chronic pain states. However, the cellular basis of this action remains poorly understood. Using whole-cell patch-clamp recordings, we examined the action of IL-1ß on AMPA- and NMDA-receptor-mediated currents recorded from substantia gelatinosa (SG) neurons of adult rat spinal cord slices which are key sites for regulating nociceptive transmission from the periphery. RESULTS: AMPA- and NMDA-induced currents were increased in peak amplitude by IL-1ß in a manner different from each other in SG neurons. These facilitatory actions of IL-1ß were abolished by IL-1 receptor (IL-1R) antagonist (IL-1ra), which by itself had no detectable effects on AMPA- and NMDA-induced currents. The AMPA- but not NMDA-induced current facilitated by IL-1ß was recovered to control level 30 min after IL-1ß washout and largely depressed in Na+-channel blocker tetrodotoxin-containing or nominally Ca2+-free Krebs solution. Minocycline, a microglia inhibitor, blocked the facilitatory effect of IL-1ß on AMPA- but not NMDA-induced currents, where minocycline itself depressed NMDA- but had not any effects on AMPA-induced currents. CONCLUSIONS: IL-1ß enhances AMPA and NMDA responses in SG neurons through IL-1R activation; the former but not latter action is reversible and due to an increase in neuronal activity in a manner dependent on extracellular Ca2+ and minocycline. It is suggested that AMPA and NMDA receptors are positively modulated by IL-1ß in a manner different from each other; the former but not latter is mediated by a neurotransmitter released as a result of an increase in neuronal activity. Since IL-1ß contributes to nociceptive behavior induced by peripheral nerve or tissue injury, the present findings also reveal an important cellular link between neuronal and glial cells in the spinal dorsal horn.


Assuntos
Envelhecimento/metabolismo , Interleucina-1beta/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cálcio/metabolismo , Humanos , Técnicas In Vitro , Masculino , Minociclina/farmacologia , N-Metilaspartato/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Células do Corno Posterior/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-1/metabolismo , Substância Gelatinosa/citologia , Substância Gelatinosa/metabolismo , Tetrodotoxina/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
12.
Biochem Biophys Res Commun ; 434(1): 179-84, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23537660

RESUMO

Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC50 values of 1.2 and 1.5mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC50=0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Canais de Potencial de Receptor Transitório/agonistas , Acroleína/análogos & derivados , Acroleína/farmacologia , Monoterpenos Acíclicos , Alcaloides/farmacologia , Amidas/farmacologia , Animais , Benzodioxóis/farmacologia , Feminino , Isotiocianatos/farmacologia , Masculino , Monoterpenos/farmacologia , Condução Nervosa/efeitos dos fármacos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Ranidae
13.
Biochem Biophys Res Commun ; 418(4): 695-700, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22293187

RESUMO

Although the intrathecal administration of JM-1232(-) reportedly produces antinociception, this action has not yet been examined at the cellular level. We examined the action of JM-1232(-) on synaptic transmission in spinal substantia gelatinosa (SG) neurons which play an important role in regulating nociceptive transmission from the periphery. The whole-cell patch-clamp technique was applied to the SG neurons of adult rat spinal cord slices. Bath-applied JM-1232(-) prolonged the decay phase of GABA(A)-receptor mediated spontaneous inhibitory postsynaptic current (sIPSC) and increased its frequency without a change in amplitude. The former but not latter action was sensitive to a benzodiazepine-receptor antagonist flumazenil. JM-1232(-) also increased glycinergic sIPSC frequency with no change in amplitude and decay phase. On the other hand, glutamatergic spontaneous excitatory transmission was unaffected by JM-1232(-). These results indicate that JM-1232(-) enhances inhibitory transmission by (1) prolonging the decay phase of GABAergic sIPSC through benzodiazepine-receptor activation and by (2) increasing the spontaneous release of GABA and glycine from nerve terminals without its activation. This enhancement could contribute to at least a part of the antinociceptive effect of intrathecally-administered JM-1232(-).


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Isoindóis/farmacologia , Piperazinas/farmacologia , Receptores de GABA-A/metabolismo , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Agonistas de Receptores de GABA-A/química , Isoindóis/química , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Piperazinas/química , Ratos , Ratos Sprague-Dawley , Solubilidade , Substância Gelatinosa/fisiologia , Transmissão Sináptica/fisiologia , Água/química
14.
J Neurosci Res ; 90(9): 1830-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22488082

RESUMO

Although opioids inhibit action potential (AP) conduction in primary-afferent fibers, this has not yet been fully examined. We investigated by using the sharp glass microelectrode technique how opioids (morphine, codeine, and ethylmorphine) affect APs recorded from adult rat dorsal root ganglion (DRG) neurons in response to sciatic nerve stimulation. The DRG neurons were classified into three types, Aα/ß, Aδ, and C, according to AP characteristics, including the fiber conduction velocity (CV) of the neuron. AP of the Aα/ß neuron was reduced in peak amplitude by each of the opioids in a reversible and concentration-dependent manner. The potency sequence was ethylmorphine > codeine = morphine (IC(50) = 0.70, 2.5, and 2.9 mM, respectively), indicating that this AP inhibition is related to the chemical structure of the opioid. Each of the Aδ and C neuron APs was also inhibited by the opioids; ethylmorphine had a tendency to inhibit APs more effectively than codeine and morphine. This inhibition was variable in extent among neurons and was either comparable to or greater than that of the Aα/ß neuron AP. The opioid-induced AP inhibitions were unaffected by nonspecific opioid-receptor antagonist naloxone; opioid-receptor agonists did not affect APs. In conclusion, the opioids inhibited APs in DRG neurons without opioid-receptor activation; this inhibition was different among neurons having different primary-afferent fiber CVs and also among the three kinds of opioid. The inhibition by opioid of primary-afferent fiber AP conduction is suggested to be distinct in extent among fibers conveying distinct types of nociceptive information.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Gânglios Espinais/efeitos dos fármacos , Morfina/farmacologia , Neurônios/efeitos dos fármacos , Animais , Codeína/farmacologia , Gânglios Espinais/metabolismo , Masculino , Neurônios/metabolismo , Nociceptores/efeitos dos fármacos , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley
15.
J Neurophysiol ; 106(1): 233-46, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525362

RESUMO

GABAergic and glycinergic inhibitory synaptic transmissions in substantia gelatinosa (SG; lamina II of Rexed) neurons of the spinal dorsal horn play an important role in regulating nociceptive transmission from the periphery. It has not yet been well known whether each of the inhibitory transmissions plays a distinct role in the regulation. We report an involvement of neurotransmitters in GABAergic but not glycinergic transmission enhancement produced by the PLA(2) activator melittin, where the whole-cell patch-clamp technique is applied to the SG neurons of adult rat spinal cord slices. Glycinergic but not GABAergic spontaneous inhibitory postsynaptic current (sIPSC) was increased in frequency and amplitude by melittin in the presence of nicotinic, muscarinic acetylcholine, and α(1)-adrenergic receptor antagonists (mecamylamine, atropine, and WB-4101, respectively). GABAergic transmission enhancement produced by melittin was unaffected by the 5-hydroxytryptamine 3 receptor and P2X receptor antagonists (ICS-205,930 and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, respectively). Nicotinic and muscarinic acetylcholine receptor agonists [(-)-nicotine and carbamoylcholine, respectively] and norepinephrine, as well as melittin, increased GABAergic sIPSC frequency and amplitude. A repeated application of (-)-nicotine, carbamoylcholine, and norepinephrine, but not melittin, at an interval of 30 min produced a similar transmission enhancement. These results indicate that melittin produces the release of acetylcholine and norepinephrine, which activate (nicotinic and muscarinic) acetylcholine and α(1)-adrenergic receptors, respectively, resulting in GABAergic but not glycinergic transmission enhancement in SG neurons. The desensitization of a system leading to the acetylcholine and norepinephrine release is slow in recovery. This distinction in modulation between GABAergic and glycinergic transmissions may play a role in regulating nociceptive transmission.


Assuntos
Acetilcolina/fisiologia , Glicina/fisiologia , Meliteno/farmacologia , Neurônios/efeitos dos fármacos , Norepinefrina/fisiologia , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Atropina/farmacologia , Carbacol/farmacologia , Dioxanos/farmacologia , Indóis/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Mecamilamina/farmacologia , Antagonistas Muscarínicos/farmacologia , Neurônios/fisiologia , Nicotina/farmacologia , Antagonistas Nicotínicos/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Ratos , Antagonistas da Serotonina/farmacologia , Substância Gelatinosa/fisiologia , Transmissão Sináptica/fisiologia , Tropizetrona
16.
J Neurophysiol ; 105(5): 2337-49, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21411568

RESUMO

Although intrathecally administrated galanin modulates nociceptive transmission in a biphasic manner, this has not been fully examined previously. In the present study, the action of galanin on synaptic transmission in the substantia gelatinosa (SG) neurons of adult rat spinal cord slices was examined, using the whole cell patch-clamp technique. Galanin concentration-dependently increased the frequency of spontaneous excitatory postsynaptic current (EPSC; EC(50) = 2.0 nM) without changing the amplitude, indicating a presynaptic effect. This effect was reduced in a Ca(2+)-free, or voltage-gated Ca(2+) channel blocker La(3+)-containing Krebs solution and was produced by a galanin type-2/3 receptor (GalR2/R3) agonist, galanin 2-11, but not by a galanin type-1 receptor (GalR1) agonist, M617. Galanin also concentration-dependently produced an outward current at -70 mV (EC(50) = 44 nM), although this appeared to be contaminated by a small inward current. This outward current was mimicked by M617, but not by galanin 2-11. Moreover, galanin reduced monosynaptic Aδ-fiber- and C-fiber-evoked EPSC amplitude; the former reduction was larger than the latter. A similar action was produced by galanin 2-11, but not by M617. Spontaneous and focally evoked inhibitory (GABAergic and glycinergic) transmission was unaffected by galanin. These findings indicate that galanin at lower concentrations enhances the spontaneous release of l-glutamate from nerve terminals by Ca(2+) entry from the external solution following GalR2/R3 activation, whereas galanin at higher concentrations also produces a membrane hyperpolarization by activating GalR1. Moreover, galanin reduces l-glutamate release onto SG neurons from primary afferent fibers by activating GalR2/R3. These effects could partially contribute to the behavioral effect of galanin.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Galanina/farmacologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Substância Gelatinosa/fisiologia , Transmissão Sináptica/fisiologia , Animais , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Galanina/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
17.
Biochem Biophys Res Commun ; 410(4): 841-5, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21703243

RESUMO

We examined the effects of TRPV1 agonists olvanil and piperine on glutamatergic spontaneous excitatory transmission in the substantia gelatinosa (SG) neurons of adult rat spinal cord slices with the whole-cell patch-clamp technique. Bath-applied olvanil did not affect the frequency and amplitude of spontaneous excitatory postsynaptic current (sEPSC), and unchanged holding currents at -70 mV. On the other hand, superfusing piperine reversibly and concentration-dependently increased sEPSC frequency (half-maximal effective concentration: 52.3 µM) with a minimal increase in its amplitude. This sEPSC frequency increase was almost repetitive at an interval of more than 20 min. Piperine at a high concentration produced an inward current in some neurons. The facilitatory effect of piperine was blocked by TRPV1 antagonist capsazepine. It is concluded that piperine but not olvanil activates TRPV1 channels in the central terminals of primary-afferent neurons, resulting in an increase in the spontaneous release of l-glutamate onto SG neurons.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Glutamatos/fisiologia , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Animais , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Substância Gelatinosa/citologia , Substância Gelatinosa/fisiologia
18.
Biochem Biophys Res Commun ; 379(4): 980-4, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19135979

RESUMO

We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na(+)-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.


Assuntos
Anestésicos Locais/farmacologia , Canais de Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Lidocaína/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Anquirinas , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Procaína/farmacologia , Ratos , Ratos Sprague-Dawley , Substância Gelatinosa/citologia , Substância Gelatinosa/fisiologia , Canal de Cátion TRPA1 , Canais de Cátion TRPC
19.
Naunyn Schmiedebergs Arch Pharmacol ; 392(3): 359-369, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30519707

RESUMO

Although the intravenous general anesthetic propofol (2,6-diisopropylphenol) has an ability to inhibit nerve conduction, this has not been fully examined. Various agents inhibit compound action potentials (CAPs) in a manner dependent on their chemical structures. To determine propofol's chemical structure that is important in nerve conduction inhibition, we examined the effects of propofol and its related compounds on fast-conducting CAPs recorded from the frog sciatic nerve by using the air-gap method. Propofol concentration-dependently reduced the peak amplitude of the CAP with a half-maximal inhibitory concentration (IC50) value of 0.14 mM. A similar inhibition was produced by other phenols, 4-sec-butylphenol and 4-amylphenol (IC50 values: 0.33 and 0.20 mM, respectively). IC50 values for these and more phenols (4-isopropylphenol, 4-tert-butylphenol, and 4-ter-amylphenol; data published previously) were correlated with the logarithm of their octanol-water partition coefficients. A phenol having ketone group (raspberry ketone) and alcohols (3-phenyl-1-propanol and 2-phenylethylalcohol) inhibited CAPs less effectively than the above-mentioned phenols. The local anesthetic (LA) benzocaine reduced CAP peak amplitudes with an IC50 of 0.80 mM, a value larger than that of propofol. When compared with other LAs, propofol activity was close to those of ropivacaine, levobupivacaine, and pramoxine, while benzocaine activity was similar to those of cocaine and lidocaine. It is concluded that propofol inhibits nerve conduction, possibly owing to isopropyl and hydroxyl groups bound to the benzene ring of propofol and to its lipophilicity; propofol's efficacy is comparable to those of some LAs. These results could serve to develop propofol-related agents exhibiting analgesia when applied topically.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anestésicos Gerais/farmacologia , Fenóis/farmacologia , Nervo Isquiático/efeitos dos fármacos , Álcoois/farmacologia , Anestésicos Gerais/química , Anestésicos Locais/farmacologia , Animais , Benzocaína/farmacologia , Feminino , Cetonas/farmacologia , Masculino , Fenóis/química , Ranidae , Nervo Isquiático/fisiologia
20.
Pharmacol Rep ; 71(1): 67-72, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30471518

RESUMO

BACKGROUND: Transient receptor potential ankyrin-1 (TRPA1) channels expressed in the central terminal of dorsal root ganglion neurons in the spinal substantia gelatinosa (SG) play a role in modulating nociceptive transmission. Although plant-derived compounds exhibiting antinociception (such as eugenol, carvacrol and thymol) activate TRPA1 channels to enhance spontaneous excitatory transmission while hyperpolarizing membranes in SG neurons without TRPA1 activation, specific chemical moieties involved in synaptic modulation are unknown. METHODS: We examined the effects of other plant-derived compounds (guaiacol, vanillin, vanillic acid and p-cymene) on holding current and spontaneous excitatory transmission at -70 mV by applying the whole-cell patch-clamp technique to SG neurons in adult rat spinal cord slices. RESULTS: None of the compounds affected the frequency or amplitude of spontaneous excitatory postsynaptic current. Guaiacol and vanillic acid had no effect on holding currents, while vanillin and p-cymene produced an inward and outward current, respectively, in some neurons tested. Synaptic modulation was also observed within the same neuron as the activities of eugenol, carvacrol, thymol, and the chemically-related plant-derived compound zingerone occurred. CONCLUSION: A substituted group in eugenol and zingerone, but not in guaiacol, vanillin or vanillic acid, as well as an OH bound to the benzene ring of carvacrol and thymol, but not p-cymene, play a role in producing outward current and TRPA1 activation. Thus, the binding of such chemical moeties to the benzene ring of plant-derived compounds appears necessary to modulate nociceptive transmission in the SG. This information provides insight for the development of new analgesics based on plant-derived compounds.


Assuntos
Analgésicos/farmacologia , Extratos Vegetais/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Canal de Cátion TRPA1/agonistas , Analgésicos/química , Animais , Benzaldeídos/química , Benzaldeídos/farmacologia , Cimenos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Guaiacol/química , Guaiacol/farmacologia , Técnicas In Vitro , Masculino , Estrutura Molecular , Monoterpenos/química , Monoterpenos/farmacologia , Extratos Vegetais/química , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Substância Gelatinosa/metabolismo , Canal de Cátion TRPA1/metabolismo , Ácido Vanílico/química , Ácido Vanílico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA