Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(10): 1059-1070, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250186

RESUMO

Elucidation of how the differentiation of hematopoietic stem and progenitor cells (HSPCs) is reconfigured in response to the environment is critical for understanding the biology and disorder of hematopoiesis. Here we found that the transcription factors (TFs) Bach2 and Bach1 promoted erythropoiesis by regulating heme metabolism in committed erythroid cells to sustain erythroblast maturation and by reinforcing erythroid commitment at the erythro-myeloid bifurcation step. Bach TFs repressed expression of the gene encoding the transcription factor C/EBPß, as well as that of its target genes encoding molecules important for myelopoiesis and inflammation; they achieved the latter by binding to their regulatory regions also bound by C/EBPß. Lipopolysaccharide diminished the expression of Bach TFs in progenitor cells and promoted myeloid differentiation. Overexpression of Bach2 in HSPCs promoted erythroid development and inhibited myelopoiesis. Knockdown of BACH1 or BACH2 in human CD34+ HSPCs impaired erythroid differentiation in vitro. Thus, Bach TFs accelerate erythroid commitment by suppressing the myeloid program at steady state. Anemia of inflammation and myelodysplastic syndrome might involve reduced activity of Bach TFs.


Assuntos
Anemia/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Eritropoese/fisiologia , Anemia/etiologia , Animais , Diferenciação Celular/fisiologia , Células Eritroides/citologia , Células Eritroides/metabolismo , Humanos , Infecções/complicações , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/metabolismo
2.
Rinsho Ketsueki ; 65(3): 183-187, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38569864

RESUMO

The transcription factor GATA-1 is essential for erythroid differentiation. Recently, FAM210B, which encodes a mitochondrial inner membrane protein, has been identified as a novel target of GATA-1. To clarify the role of FAM210B, we depleted endogenous FAM210B in human iPS-derived erythroid progenitor (HiDEP-1) cells, and found that erythroid differentiation was more pronounced in the FAM210B depleted cells. Comprehensive metabolite analysis revealed a decline in mitochondrial function accompanied by increased lactate production, indicative of anaerobic glycolysis. Mass spectrometry revealed that FAM210B could interact with multiple subunits of mitochondrial ATP synthases, such as subunit alpha (ATP5A) and beta (ATP5B). Our results suggested that FAM210B contributes prominently to erythroid differentiation by regulating mitochondrial energy metabolism. This review will discuss the potential association between mitochondrial metabolism and erythropoiesis.


Assuntos
Fator de Transcrição GATA1 , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Células Precursoras Eritroides/metabolismo , Diferenciação Celular/fisiologia , Eritropoese/fisiologia
3.
Tohoku J Exp Med ; 257(3): 211-224, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35491124

RESUMO

Chronic myeloid leukemia (CML) is triggered by t(9;22)(q34;q11.2) translocation, leading to the formation of the BCR-ABL1 fusion gene. Although the development of BCR-ABL1 tyrosine kinase inhibitors (TKIs) has dramatically improved the prognosis of CML, the disease could often relapse, presumably because leukemic stem cell fraction of CML (CML-LSC) may reside in specific niches, and also acquire an ability to resist the cytotoxic agents. Recently a study indicated that pharmacological inhibition of plasminogen activator inhibitor-1 (PAI-1, also known as SERPINE1) would cause detachment of CML-LSCs from their niche by inducing maturation of membrane-type matrix metalloprotease-1 (MT1-MMP), leading to increased susceptibility of CML-LSCs against TKIs. However, the direct antitumor effect of PAI-1 inhibition in CML remains unclear. Because PAI-1 mRNA expression was lower in CML cell line (K562) than bone marrow mononuclear cells derived from CML patients, we established K562 cell clones stably expressing exogenous PAI-1 (K562/PAI-1). We found that TM5614 treatment significantly suppressed cell proliferation and induced apoptosis in K562/PAI-1 cells, accompanied by increased activity of Furin protease, which is a known target of PAI-1. Besides processing mature MT1-MMP, Furin is in charge of cleaving the NOTCH receptor to form a heterodimer before exporting it to the cell surface membrane. In K562/PAI-1 cells, TM5614 treatment increased NOTCH1 intracellular domain (NICD) protein expression as well as NOTCH1 target of HEY1 mRNA levels. Finally, forced expression of either Furin or NICD in K562/PAI-1 cells significantly inhibited cell proliferation and induced apoptosis. Collectively, PAI-1 inhibition may have an antitumor effect by modulating the Furin/NICD pathway.


Assuntos
Antineoplásicos , Furina , Leucemia Mielogênica Crônica BCR-ABL Positiva , Antineoplásicos/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Metaloproteinase 14 da Matriz/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro
4.
Rinsho Ketsueki ; 63(6): 600-607, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35831194

RESUMO

Sideroblastic anemias (SAs) are a group of heterogeneous congenital and acquired disorders characterized by anemia and presence of ring sideroblasts in the bone marrow. Congenital SA is a rare condition caused by mutations of genes involved in heme biosynthesis, iron-sulfur cluster biosynthesis, and mitochondrial protein synthesis. SAs can also occur following exposure to certain drugs or alcohol or caused by copper deficiency (secondary SA). SAs have been found to be associated with myelodysplastic syndrome (idiopathic SA), which strongly correlates with specific somatic mutations in SF3B1 (splicing factor 3b subunit 1), involved in the RNA splicing machinery. The recent widespread use of genome-editing technology and next-generation sequencing has led to a better understanding of the molecular pathophysiology of SAs. This review discusses the current understanding of the pathophysiology of SAs.


Assuntos
Anemia Sideroblástica , Síndromes Mielodisplásicas , Anemia Sideroblástica/genética , Células Precursoras Eritroides/metabolismo , Humanos , Mutação , Síndromes Mielodisplásicas/complicações , Splicing de RNA
5.
Pediatr Blood Cancer ; 68(2): e28799, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33200495

RESUMO

Pearson syndrome (PS) is a very rare and often fatal multisystem disease caused by deletions in mitochondrial DNA that result in sideroblastic anemia, vacuolization of marrow precursors, and pancreatic dysfunction. Spontaneous recovery from anemia is often observed within several years of diagnosis. We present the case of a 4-month-old male diagnosed with PS who experienced prolonged severe pancytopenia preceding the emergence of monosomy 7. Whole-exome sequencing identified two somatic mutations, including RUNX1 p.S100F that was previously reported as associated with myeloid malignancies. The molecular defects associated with PS may have the potential to progress to advanced myelodysplastic syndrome .


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/terapia , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Doenças Musculares/genética , Doenças Musculares/terapia , Proteínas do Tecido Nervoso/genética , Transfusão de Sangue , Deleção Cromossômica , Cromossomos Humanos Par 7/genética , DNA Mitocondrial/genética , Predisposição Genética para Doença/genética , Humanos , Lactente , Masculino , Pancitopenia/genética , Pancitopenia/patologia , Sequenciamento do Exoma
6.
Rinsho Ketsueki ; 61(7): 770-778, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32759564

RESUMO

Ring sideroblasts show abnormal mitochondrial iron accumulation, and their emergence in the bone marrow is a characteristic of sideroblastic anemias (SAs). SAs are a group of heterogeneous congenital and acquired disorders. Congenital SA is a rare disease caused by gene mutations involved in heme biosynthesis, iron-sulfur cluster biosynthesis, and mitochondrial protein synthesis. SAs can also occur after exposure to certain drugs or alcohol and due to copper deficiency (secondary SA). Furthermore, SAs are associated with myelodysplastic syndrome (idiopathic SA), strongly correlating with specific somatic mutations in splicing factor 3b subunit 1 (SF3B1), which is involved in the RNA splicing machinery. Recent reports have indicated that common defects in iron/heme metabolism underlie in the mechanisms of ring sideroblast formation in congenital and acquired SAs. Current understanding of SA pathophysiology, including the mechanisms of ring sideroblast formation, is discussed in this review.


Assuntos
Anemia Sideroblástica , Células Precursoras Eritroides , Heme , Humanos , Ferro , Mutação , Síndromes Mielodisplásicas
7.
Biol Blood Marrow Transplant ; 25(2): e55-e59, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30292011

RESUMO

Umbilical cord blood transplantation (UCBT) is a possible option for patients with aplastic anemia (AA) without a related or unrelated HLA-matched donor, particularly if immunosuppressive therapy (IST) has failed or transplantation is urgently needed. However, a higher rate of graft failure after UCBT remains a major problem, and the optimal conditioning regimen for stable engraftment after UCBT has not been established. Here we investigated 6 adult patients with AA who underwent UCBT using a reduced-intensity conditioning (RIC) regimen comprising fludarabine 125 mg/m2, cyclophosphamide 120 mg/kg, and 4 Gy of total body irradiation (Flu/CY/TBI4Gy) without antithymocyte globulin (ATG). Five patients underwent UCBT after IST failure, and 1 patient underwent UCBT as a first-line treatment due to a fulminant clinical finding of a neutrophil count of 0, despite granulocyte colony-stimulating factor administration. Regarding graft-versus-host disease (GVHD) prophylaxis, 2 patients received tacrolimus plus short-term methotrexate and 4 patients received tacrolimus plus mycophenolate mofetil, and all patients achieved sustained engraftment of both neutrophils and platelets, at a median of 17.5 days (range, 14 to 37 days) and 38.5 days (range, 31 to 86 days), respectively, with complete donor chimerism confirmed in all patients at a median of 14 days (range, 14 to 32 days). Three patients developed grade II acute GVHD (aGVHD), but grade III/IV aGVHD was not observed, whereas 4 patients developed chronic GVHD involving only skin. At the time of this report, all 6 patients were alive without the need for blood transfusion, at a median follow-up of 16 months (range, 12 to 131 months). Although further study is needed, our findings suggest that conditioning with Flu/CY/TBI4Gy without ATG might allow stable engraftment in UCBT for adults with AA.


Assuntos
Anemia Aplástica/terapia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Condicionamento Pré-Transplante , Adulto , Aloenxertos , Anemia Aplástica/patologia , Soro Antilinfocitário , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença
8.
Tohoku J Exp Med ; 249(1): 19-28, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511451

RESUMO

Multiple myeloma is the cancer of plasma cells. Along with the development of new and effective therapies, improved outcomes in patients with multiple myeloma have increased the interest in minimal residual disease (MRD) monitoring. However, the considerable heterogeneity of immunophenotypic and molecular markers of myeloma cells has limited its clinical application. 5-Aminolevulinic acid (ALA) is a natural compound in the heme biosynthesis pathway. Following ALA treatment, tumor cells preferentially accumulate porphyrins because of the differential activities of aerobic glycolysis, known as Warburg effect. Among various porphyrins, protoporphyrine IX is a strong photosensitizer; thus, ALA-based photodynamic diagnosis has been widely used in various solid cancers. Here, the feasibility of flow cytometry-based photodynamic detection of MRD was tested in multiple myeloma. Among various human cell lines of hematological malignancies, including K562 erythroleukemia, Jurkat T-cell leukemia, Nalm6 pre-B cell leukemia, KG1a myeloid leukemia, and U937 monocytic leukemia, human myeloma cell line, KMS18, and OPM2 abundantly expressed ALA transporters, such as SLC36A1 and SLC15A2, and 1 mM ALA treatment for 24 h resulted in nearly 100% porphyrin fluorescence expression, which could be competitively inhibited by ALA transport with gamma-aminobutyric acid. Titration studies revealed that the lowest ALA concentration required to achieve nearly 100% porphyrin fluorescence in KMS18 cells was 0.25 mM, with an incubation period of 2 h. Under these conditions, incubation of primary peripheral blood mononuclear cells resulted in only 1.8 % of the cells exhibiting porphyrin fluorescence. Therefore, flow cytometry-based photodynamic diagnosis is a promising approach for detecting MRD in multiple myeloma.


Assuntos
Citometria de Fluxo/métodos , Ácidos Levulínicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Neoplasia Residual/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Protoporfirinas/uso terapêutico , Ácido gama-Aminobutírico/farmacologia , Ácido Aminolevulínico
9.
Rinsho Ketsueki ; 60(5): 408-416, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31168006

RESUMO

Sideroblastic anemia (SA) signifies a group of heterogeneous congenital and acquired disorders characterized by anemia and the presence of ring sideroblasts in the bone marrow. Congenital SA is a rare disease caused by mutations of genes involved in heme biosynthesis, iron-sulfur cluster biosynthesis, and mitochondrial protein synthesis. In addition, SA can occur after exposure to certain drugs or alcohol and because of copper deficiency (secondary SA). Of note, SA also correlates with myelodysplastic syndrome (idiopathic SA). Recent progress in the genome analysis technology has enabled the identification of novel causative genes for SA, elucidating the molecular pathophysiology of these disorders. Accordingly, the significance of genetic diagnosis for SA has been increasing. This review discusses the current understanding of genetic mutations involved in the pathophysiology of SA.


Assuntos
Anemia Sideroblástica/genética , Humanos , Mutação
10.
Blood ; 128(4): 508-18, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27259979

RESUMO

Dendritic cells (DCs) are critical immune response regulators; however, the mechanism of DC differentiation is not fully understood. Heterozygous germ line GATA2 mutations induce GATA2-deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia/acute myeloid leukemia, and a profoundly reduced DC population, which is associated with increased susceptibility to viral infections, impaired phagocytosis, and decreased cytokine production. To define the role of GATA2 in DC differentiation and function, we studied Gata2 conditional knockout and haploinsufficient mice. Gata2 conditional deficiency significantly reduced the DC count, whereas Gata2 haploinsufficiency did not affect this population. GATA2 was required for the in vitro generation of DCs from Lin(-)Sca-1(+)Kit(+) cells, common myeloid-restricted progenitors, and common dendritic cell precursors, but not common lymphoid-restricted progenitors or granulocyte-macrophage progenitors, suggesting that GATA2 functions in the myeloid pathway of DC differentiation. Moreover, expression profiling demonstrated reduced expression of myeloid-related genes, including mafb, and increased expression of T-lymphocyte-related genes, including Gata3 and Tcf7, in Gata2-deficient DC progenitors. In addition, GATA2 was found to bind an enhancer element 190-kb downstream region of Gata3, and a reporter assay exhibited significantly reduced luciferase activity after adding this enhancer region to the Gata3 promoter, which was recovered by GATA sequence deletion within Gata3 +190. These results suggest that GATA2 plays an important role in cell-fate specification toward the myeloid vs T-lymphocyte lineage by regulating lineage-specific transcription factors in DC progenitors, thereby contributing to DC differentiation.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Fator de Transcrição GATA2/imunologia , Animais , Diferenciação Celular/genética , Células Dendríticas/citologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/imunologia , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/imunologia , Camundongos , Camundongos Knockout , Células Mieloides/citologia , Células Mieloides/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
11.
Stem Cells ; 35(3): 739-753, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27641212

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent progenitor cells and there is much interest in how MSCs contribute to the regulation of the tumor microenvironment. Whether MSCs exert a supportive or suppressive effect on tumor progression is still controversial, but is likely dependent on a variety of factors that are tumor-type dependent. Multiple myeloma (MM) is characterized by growth of malignant plasma cells in the bone marrow. It has been shown that the progression of MM is governed by MSCs, which act as a stroma of the myeloma cells. Although stroma is created via mutual communication between myeloma cells and MSCs, the mechanism is poorly understood. Here we explored the role of lysophosphatidic acid (LPA) signaling in cellular events where MSCs were converted into either MM-supportive or MM-suppressive stroma. We found that myeloma cells stimulate MSCs to produce autotaxin, an indispensable enzyme for the biosynthesis of LPA, and LPA receptor 1 (LPA1) and 3 (LPA3) transduce opposite signals to MSCs to determine the fate of MSCs. LPA3-silenced MSCs (siLPA3-MSCs) exhibited cellular senescence-related phenotypes in vitro, and significantly promoted progression of MM and tumor-related angiogenesis in vivo. In contrast, siLPA1-MSCs showed resistance to cellular senescence in vitro, and efficiently delayed progression of MM and tumor-related angiogenesis in vivo. Consistently, anti-MM effects obtained by LPA1-silencing in MSCs were completely reproduced by systemic administration of Ki6425, an LPA1 antagonist. Collectively, our results indicate that LPA signaling determines the fate of MSCs and has potential as a therapeutic target in MM. Stem Cells 2017;35:739-753.


Assuntos
Senescência Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Mieloma Múltiplo/irrigação sanguínea , Mieloma Múltiplo/patologia , Neovascularização Patológica/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transdiferenciação Celular , Progressão da Doença , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Diester Fosfórico Hidrolases/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Tohoku J Exp Med ; 244(1): 41-52, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29343653

RESUMO

Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in hematopoietic stem and progenitor cells and is essential for cell proliferation and differentiation. Heterozygous germline GATA2 mutations induce GATA-2 deficiency syndrome, characterized by monocytopenia, a predisposition to myelodysplasia and acute myeloid leukemia, and a profoundly reduced dendritic cell (DC) population, which is associated with increased susceptibility to viral infections. Because patients with GATA-2 deficiency syndrome could retain a wild-type copy of GATA-2, boosting residual wild-type GATA-2 activity may represent a novel therapeutic strategy for the disease. Here, we sought to establish a screening system to identify GATA-2 activators using human U937 monocytic cells as a potential model of the DC progenitor. Enforced GATA-2 expression in U937 cells induces CD205 expression, a marker of DC differentiation, indicating U937 cells as a surrogate of human primary DC progenitors. Transient luciferase reporter assays in U937 cells reveals a high promoter activity of the -0.5 kb GATA-2 hematopoietic-specific promoter (1S promoter) fused with two tandemly connected GATA-2 +9.9 kb intronic enhancers. We thus established U937-derived cell lines stably expressing tandem +9.9 kb/-0.5 kb 1S-luciferase. Importantly, forced GATA-1 expression, a repressor for GATA-2 expression, in the stable clones caused significant decreases in the luciferase activities. In conclusion, our system represents a potential tool for identifying novel regulators of GATA-2, thereby contributing to the development of novel therapeutic approaches.


Assuntos
Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica , Testes Genéticos , Transcrição Gênica , Pareamento de Bases/genética , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Células Clonais , Células Dendríticas/metabolismo , Humanos , Soros Imunes/metabolismo , Luciferases/metabolismo , Regiões Promotoras Genéticas/genética
14.
Rinsho Ketsueki ; 59(10): 1979-1987, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-30305500

RESUMO

Sideroblastic anemias (SAs) are heterogeneous congenital and acquired disorders characterized by anemia and the presence of ring sideroblasts in bone marrow. Congenital sideroblastic anemia (CSA) is a rare disease caused by mutations in genes that are involved in heme biosynthesis, iron-sulfur [Fe-S] cluster biosynthesis, and mitochondrial protein synthesis. The most common form of CSA is X-linked sideroblastic anemia; it occurs because of mutations in the erythroid-specific δ-aminolevulinate synthase gene (ALAS2), which is the first enzyme of the heme biosynthesis pathway in erythroid cells. Additionally, SAs can occur after exposure to certain drugs or alcohol and with copper deficiency (secondary SA) ; they are also detected in association with myelodysplastic syndrome (idiopathic SA). Among all types of SAs, idiopathic SA is the most common form. This review encompasses the current understanding of the molecular pathophysiology of SA.


Assuntos
Anemia Sideroblástica/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Síndromes Mielodisplásicas , 5-Aminolevulinato Sintetase/genética , Humanos , Mutação , Síndromes Mielodisplásicas/complicações
15.
Rinsho Ketsueki ; 59(4): 401-406, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-29743399

RESUMO

A 45-year-old man presented with fatigue and pain in the finger joints. Despite having a history of suspected sideroblastic anemia since the age of 18 years, he had not been followed up for years. Upon presentation, laboratory data revealed microcytic anemia and elevated serum ferritin levels. In addition, ringed sideroblasts were increased in the bone marrow. A liver biopsy revealed hemochromatosis and cirrhosis. Furthermore, genetic analysis revealed that he harbored the ALAS2 R452H mutation, leading to the diagnosis of X-linked sideroblastic anemia (XLSA). Accordingly, oral folate or vitamin (Vit) B12 was administered, but his anemia did not respond. However, his hemoglobin level increased from 7 to 11 g/dl with an additional prescription of oral VitB6, which facilitated the patient to undergo phlebotomy to ameliorate organ dysfunctions caused by iron overload. Previous research has revealed that ALAS2 R452 mutations confer poor responses to VitB6 therapy. Hence, accrual of patients with an unexpectedly better response, which was observed in our case, may help elucidate the pathogenesis of and therapies for XLSA.


Assuntos
Anemia Sideroblástica/terapia , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Vitamina B 6/uso terapêutico , 5-Aminolevulinato Sintetase/genética , Anemia Sideroblástica/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
16.
Biochem Biophys Res Commun ; 485(2): 380-387, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28216155

RESUMO

The transcription factor GATA-1-interacting protein Friend of GATA-1 (FOG1) is essential for proper transcriptional activation and repression of GATA-1 target genes; yet, the mechanisms by which FOG1 exerts its activating and repressing functions remain unknown. Forced FOG1 expression in human K562 erythroleukemia cells induced the expression of erythroid genes (SLC4A1, globins) but repressed that of GATA-2 and PU.1. A quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated increased GATA-1 chromatin occupancy at both FOG1-activated as well as FOG1-repressed gene loci. However, while TAL1 chromatin occupancy was significantly increased at FOG1-activated gene loci, it was significantly decreased at FOG1-repressed gene loci. When FOG1 was overexpressed in TAL1-knocked down K562 cells, FOG1-mediated activation of HBA, HBG, and SLC4A1 was significantly compromised by TAL1 knockdown, suggesting that FOG1 may require TAL1 to activate GATA-1 target genes. Promoter analysis and quantitative ChIP analysis demonstrated that FOG1-mediated transcriptional repression of PU.1 would be mediated through a GATA-binding element located at its promoter, accompanied by significantly decreased H3 acetylation at lysine 4 and 9 (K4 and K9) as well as H3K4 trimethylation. Our results provide important mechanistic insight into the role of FOG1 in the regulation of GATA-1-regulated genes and suggest that FOG1 has an important role in inducing cells to differentiate toward the erythroid lineage rather than the myelo-lymphoid one by repressing the expression of PU.1.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/genética , Regulação Leucêmica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Fatores de Transcrição/genética , Acetilação , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Histonas/metabolismo , Humanos , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/patologia , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
17.
Haematologica ; 102(3): 454-465, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27927768

RESUMO

Iron plays the central role in oxygen transport by erythrocytes as a constituent of heme and hemoglobin. The importance of iron and heme is also to be found in their regulatory roles during erythroblast maturation. The transcription factor Bach1 may be involved in their regulatory roles since it is deactivated by direct binding of heme. To address whether Bach1 is involved in the responses of erythroblasts to iron status, low iron conditions that induced severe iron deficiency in mice were established. Under iron deficiency, extensive gene expression changes and mitophagy disorder were induced during maturation of erythroblasts. Bach1-/- mice showed more severe iron deficiency anemia in the developmental phase of mice and a retarded recovery once iron was replenished when compared with wild-type mice. In the absence of Bach1, the expression of globin genes and Hmox1 (encoding heme oxygenase-1) was de-repressed in erythroblasts under iron deficiency, suggesting that Bach1 represses these genes in erythroblasts under iron deficiency to balance the levels of heme and globin. Moreover, an increase in genome-wide DNA methylation was observed in erythroblasts of Bach1-/- mice under iron deficiency. These findings reveal the principle role of iron as a regulator of gene expression in erythroblast maturation and suggest that the iron-heme-Bach1 axis is important for a proper adaptation of erythroblast to iron deficiency to avoid toxic aggregates of non-heme globin.


Assuntos
Adaptação Biológica , Anemia Ferropriva/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Eritroblastos/metabolismo , Heme/metabolismo , Ferro/metabolismo , Anemia Ferropriva/etiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Sanguíneas/metabolismo , Células da Medula Óssea/metabolismo , Análise por Conglomerados , Metilação de DNA , Dieta , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Globinas/genética , Globinas/metabolismo , Camundongos , Camundongos Knockout , Mitofagia/genética , Ligação Proteica , Transdução de Sinais
18.
Mol Cell ; 36(6): 984-95, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-20064464

RESUMO

GATA factors establish transcriptional networks that control fundamental developmental processes. Whereas the regulator of hematopoiesis GATA-1 is subject to multiple posttranslational modifications, how these modifications influence GATA-1 function at endogenous loci is unknown. We demonstrate that sumoylation of GATA-1 K137 promotes transcriptional activation only at target genes requiring the coregulator Friend of GATA-1 (FOG-1). A mutation of GATA-1 V205G that disrupts FOG-1 binding and K137 mutations yielded similar phenotypes, although sumoylation was FOG-1 independent, and FOG-1 binding did not require sumoylation. Both mutations dysregulated GATA-1 chromatin occupancy at select sites, FOG-1-dependent gene expression, and were rescued by tethering SUMO-1. While FOG-1- and SUMO-1-dependent genes migrated away from the nuclear periphery upon erythroid maturation, FOG-1- and SUMO-1-independent genes persisted at the periphery. These results illustrate a mechanism that controls trans-acting factor function in a locus-specific manner, and differentially regulated members of the target gene ensemble reside in distinct subnuclear compartments.


Assuntos
Fator de Transcrição GATA1/metabolismo , Hematopoese/fisiologia , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica , Camundongos , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Fatores de Transcrição/genética , Transcrição Gênica
19.
Mol Cell ; 36(4): 667-81, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19941826

RESUMO

GATA factors interact with simple DNA motifs (WGATAR) to regulate critical processes, including hematopoiesis, but very few WGATAR motifs are occupied in genomes. Given the rudimentary knowledge of mechanisms underlying this restriction and how GATA factors establish genetic networks, we used ChIP-seq to define GATA-1 and GATA-2 occupancy genome-wide in erythroid cells. Coupled with genetic complementation analysis and transcriptional profiling, these studies revealed a rich collection of targets containing a characteristic binding motif of greater complexity than WGATAR. GATA factors occupied loci encoding multiple components of the Scl/TAL1 complex, a master regulator of hematopoiesis and leukemogenic target. Mechanistic analyses provided evidence for crossregulatory and autoregulatory interactions among components of this complex, including GATA-2 induction of the hematopoietic corepressor ETO-2 and an ETO-2-negative autoregulatory loop. These results establish fundamental principles underlying GATA factor mechanisms in chromatin and illustrate a complex network of considerable importance for the control of hematopoiesis.


Assuntos
Cromatina/metabolismo , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/metabolismo , Genoma Humano/genética , Sistema Hematopoético/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Imunoprecipitação da Cromatina , Biologia Computacional , Perfilação da Expressão Gênica , Loci Gênicos , Homeostase , Humanos , Células K562 , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de DNA , Proteína 1 de Leucemia Linfocítica Aguda de Células T
20.
Tohoku J Exp Med ; 242(2): 83-91, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28566565

RESUMO

The development of mature blood cell from hematopoietic stem cells is regulated by transcription factors that coordinate the expression of lineage-specific genes. GATA transcription factors are zinc finger DNA-binding proteins that play crucial roles in various biological processes, including hematopoiesis. Among GATA family proteins, GATA-1, GATA-2, and GATA-3 are essential for hematopoiesis. GATA-1 functions to promote development of erythrocytes, megakaryocytes, eosinophils, and mast cells. Mutations in GATA-1 are associated with acute megakaryoblastic leukemia (AMKL), congenital erythroid hypoplasia (Diamond-Blackfan anemia; DBA), and X-linked anemia and/or thrombocytopenia. Conversely, GATA-2 functions early in hematopoiesis and is required for maintenance and expansion of hematopoietic stem cells (HSCs) and/or multipotent progenitors. GATA-2 mutations are associated with immunodeficiency, lymphedema, myelodysplastic syndrome (MDS), and leukemia. Furthermore, decreased GATA-2 expression may contribute to the pathophysiology of aplastic anemia. GATA-3 has an important role in T cell development, and has been suggested to be involved in the pathophysiology of acute lymphoblastic leukemias. This review summarizes current knowledge on hematological disorders associated with GATA-1 and GATA-2 mutations.


Assuntos
Doença , Fatores de Transcrição GATA/metabolismo , Animais , Fatores de Transcrição GATA/química , Fatores de Transcrição GATA/genética , Estudos de Associação Genética , Humanos , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA