Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1630: 461528, 2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950813

RESUMO

Chelators, capable of creating soluble complexes with metals, may disrupt the natural speciation of metals in environmental matrices. Detection of environmental speciation of such complexes has remained challenging as obtaining the precise inherent nature of metal-chelator complexes is difficult by using routine techniques. Herein, we report a rapid and sensitive technique for the speciation analysis of complexes of five metal ions (Ni, Pb, Co, Fe and Ca) with two aminopolycarboxylate chelator variants, namely, EDTA (ethylenediaminetetraacetic acid) and EDDS (ethylenediamine-N,N'-disuccinic acid), including the simultaneous quantification of those complexes. EDTA is characterized as environmentally persistent among the chelators used in the current work whereas EDDS is biodegradable. The speciation analysis was performed using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The separation was achieved by using hydrophilic interaction liquid chromatographic column. The effect of various operating parameters on analytes such as mobile-phase composition, buffer concentrations and pH, sample diluents, sample injection volume, and column temperature on the peak shape and sensitivity were systematically optimized. The dilution was the only requirement for preparing the samples for analysis. The average relative uncertainty was 2.4% with the average precision (as RSD, n= 7) of 3.5%. For the metal-EDTA complexes, LOD range was 3 to 76 nmol L-1 with satisfactory recovery from a simulated mix matrix (recovery: 79-97%) and river water by standard addition (recovery: 82-94%). For metal-EDDS complexes, LOD range was 66 to 293 nmol L-1 with recovery from a simulated mix matrix (recovery: 56-97%) and river water by standard addition (recovery: 61-91%). The proposed method will be applicable in speciation analysis and simultaneous detection of metal-chelator complexes from environmental samples.

2.
Talanta ; 194: 980-990, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609633

RESUMO

The determination of aminopolycarboxylate chelators in environmental samples has remained an analytical challenge due to the structural similarities of these species and their minute concentrations in such matrices. Herein, we report a fast and sensitive technique for the determination of multiple chelator complexes in an aqueous matrix using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Eight chelators, including non-biodegradable (EDTA, EDTAOH, GEDTA, DPTAOH and DTPA) and biodegradable (EDDS, GLDA, and MGDA) variants were examined after complexation with CuII. The detection of these species using reverse-phase chromatography was compared with that achieved with hydrophilic interaction chromatography based on the corresponding peak resolution and retention time. The effect of varying the composition and pH of the mobile phase on the corresponding peak profiles and intensities for the chelator complexes was also evaluated. The CuII-derivatives of the chelators were individually detected under the optimized operating conditions. Relative to high-performance liquid chromatography equipped with a photodiode array detector, the developed UPLC-Q-TOF-MS technique provides rapid determination of chelator complexes in aqueous matrices with high sensitivity and superior peak resolution. The limit of detection ranged from 1.7-36 nmol L-1, and the limit of quantification ranged from 5.7-120 nmol L-1 for the eight chelator complexes in solution. The coefficients of determination (R2) were 0.962-0.999 for the chelators with an average relative uncertainty of 2.2%. The method was validated using a simulated mixed matrix and river water by standard addition (recovery: 83-100%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA