Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2206869119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914172

RESUMO

The phytohormone auxin, indole-3-acetic acid (IAA), plays a prominent role in plant development. Auxin homeostasis is coordinately regulated by auxin synthesis, transport, and inactivation; however, the physiological contribution of auxin inactivation to auxin homeostasis has not been determined. The GH3 IAA-amino acid conjugating enzymes play a central role in auxin inactivation. Chemical inhibition of GH3 proteins in planta is challenging because the inhibition of these enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we report the characterization of a potent GH3 inhibitor, kakeimide, that selectively targets IAA-conjugating GH3 proteins. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min) and indicates that both auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.


Assuntos
Homeostase , Ácidos Indolacéticos , Arabidopsis , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
2.
Biochem Biophys Res Commun ; 649: 110-117, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764113

RESUMO

DWARF14 (D14) and HTL/KAI2 (KAI2) are paralogous receptors in the α/ß-hydrolase superfamily. D14 is the receptor for a class of plant hormones, strigolactones (SLs), and KAI2 is the receptor for the smoke-derived seed germination inducer, Karrikin (KAR), in Arabidopsis. Germinone (Ger) was previously reported as a KAI2 agonist with germination-inducing activity for thermo-inhibited Arabidopsis seed. However, Ger was not specific to KAI2, and could also bind to D14. It was reported that SL analogs with a desmethyl-type D-ring structure are specifically recognized by KAI2. On the basis of this observation, we synthesized a desmethyl-type germinone (dMGer). We found that dMGer is highly specific to KAI2. Moreover, dMGer induced Arabidopsis seed germination more effectively than did Ger. In addition, dMGer induced the seed germination of Arabidopsis in a manner independently of GA, a well-known germination inducer in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Germinação , Proteínas de Arabidopsis/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Sementes/metabolismo , Hidrolases/metabolismo , Lactonas/farmacologia
3.
Opt Express ; 31(8): 12865-12879, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157437

RESUMO

In the field of continuous-variable quantum information processing, non-Gaussian states with negative values of the Wigner function are crucial for the development of a fault-tolerant universal quantum computer. While several non-Gaussian states have been generated experimentally, none have been created using ultrashort optical wave packets, which are necessary for high-speed quantum computation, in the telecommunication wavelength band where mature optical communication technology is available. In this paper, we present the generation of non-Gaussian states on wave packets with a short 8-ps duration in the 1545.32 nm telecommunication wavelength band using photon subtraction up to three photons. We used a low-loss, quasi-single spatial mode waveguide optical parametric amplifier, a superconducting transition edge sensor, and a phase-locked pulsed homodyne measurement system to observe negative values of the Wigner function without loss correction up to three-photon subtraction. These results can be extended to the generation of more complicated non-Gaussian states and are a key technology in the pursuit of high-speed optical quantum computation.

4.
Phys Rev Lett ; 131(17): 170603, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955490

RESUMO

Bosonic codes offer noise resilience for quantum information processing. Good performance often comes at a price of complex decoding schemes, limiting their practicality. Here, we propose using a Gottesman-Kitaev-Preskill code to detect and discard error-prone qubits, concatenated with a quantum parity code to handle the residual errors. Our method employs a simple linear-time decoder that nevertheless offers significant performance improvements over the standard decoder. Our Letter may have applications in a wide range of quantum computation and communication scenarios.

5.
Phys Rev Lett ; 131(23): 230801, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134775

RESUMO

Uncertainty principle prohibits the precise measurement of both components of displacement parameters in phase space. We have theoretically shown that this limit can be beaten using single-photon states, in a single-shot and single-mode setting [F. Hanamura et al., Estimation of gaussian random displacement using non-gaussian states, Phys. Rev. A 104, 062601 (2021).PLRAAN2469-992610.1103/PhysRevA.104.062601]. In this Letter, we validate this by experimentally beating the classical limit. In optics, this is the first experiment to estimate both parameters of displacement using non-Gaussian states. This result is related to many important applications, such as quantum error correction.

6.
Plant J ; 105(2): 290-306, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278046

RESUMO

Small-molecule plant hormones principally control plant growth, development, differentiation, and environmental responses. Nine types of plant hormones are ubiquitous in angiosperms, and the molecular mechanisms of their hormone actions have been elucidated during the last two decades by genomic decoding of model plants with genetic mutants. In particular, the discovery of hormone receptors has greatly contributed to the understanding of signal transduction systems. The three-dimensional structure of the ligand-receptor complex has been determined for eight of the nine hormones by X-ray crystal structure analysis, and ligand perception mechanisms have been revealed at the atomic level. Collective research has revealed the molecular function of plant hormones that act as either molecular glue or an allosteric regulator for activation of receptors. In this review, we present an overview of the respective hormone signal transduction and describe the structural bases of ligand-receptor interactions.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Ligantes , Reguladores de Crescimento de Plantas/fisiologia , Receptores de Superfície Celular/fisiologia
7.
Phys Rev Lett ; 128(24): 240503, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776478

RESUMO

Non-Gaussian states are essential for many optical quantum technologies. The so-called optical quantum state synthesizer (OQSS), consisting of Gaussian input states, linear optics, and photon-number resolving detectors, is a promising method for non-Gaussian state preparation. However, an inevitable and crucial problem is the complexity of the numerical simulation of the state preparation on a classical computer. This problem makes it very challenging to generate important non-Gaussian states required for advanced quantum information processing. Thus, an efficient method to design OQSS circuits is highly desirable. To circumvent the problem, we offer a scheme employing a backcasting approach, where the circuit of OQSS is divided into some sublayers, and we simulate the OQSS backwards from final to first layers. Moreover, our results show that the detected photon number by each detector is at most 2, which can significantly reduce the requirements for the photon-number resolving detector. By virtue of the potential for the preparation of a wide variety of non-Gaussian states, the proposed OQSS can be a key ingredient in general optical quantum information processing.

8.
Biochem Biophys Res Commun ; 527(4): 1033-1038, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32444138

RESUMO

The phytohormone auxin regulates a wide range of developmental processes in plants. Indole-3-acetic acid (IAA) is the main auxin that moves in a polar manner and forms concentration gradients, whereas phenylacetic acid (PAA), another natural auxin, does not exhibit polar movement. Although these auxins occur widely in plants, the differences between IAA and PAA metabolism remain largely unknown. In this study, we investigated the role of Arabidopsis IAA CARBOXYL METHYLTRANSFERASE 1 (IAMT1) in IAA and PAA metabolism. IAMT1 proteins expressed in Escherichia coli could convert both IAA and PAA to their respective methyl esters. Overexpression of IAMT1 caused severe auxin-deficient phenotypes and reduced the levels of IAA, but not PAA, in the root tips of Arabidopsis, suggesting that IAMT1 exclusively metabolizes IAA in vivo. We generated iamt1 null mutants via CRISPR/Cas9-mediated genome editing and found that the single knockout mutants had normal auxin levels and did not exhibit visibly altered phenotypes. These results suggest that other proteins, namely the IAMT1 homologs in the SABATH family of carboxyl methyltransferases, may also regulate IAA levels in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Metiltransferases/metabolismo , Metilação , Fenilacetatos/metabolismo
9.
Biochem Biophys Res Commun ; 532(2): 244-250, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32868079

RESUMO

Auxin is a key plant growth regulator for diverse developmental processes in plants. Indole-3-acetic acid (IAA) is a primary plant auxin that regulates the formation of various organs. Plants also produce phenylacetic acid (PAA), another natural auxin, which occurs more abundantly than IAA in various plant species. Although it has been demonstrated that the two auxins have distinct transport characteristics, the metabolic pathways and physiological roles of PAA in plants remain unsolved. In this study, we investigated the role of Arabidopsis UDP-glucosyltransferase UGT84B1 in IAA and PAA metabolism. We demonstrated that UGT84B1, which converts IAA to IAA-glucoside (IAA-Glc), can also catalyze the conversion of PAA to PAA-glucoside (PAA-Glc), with a higher catalytic activity in vitro. Furthermore, we showed a significant increase in both the IAA and PAA levels in the ugt84b1 null mutants. However, no obvious developmental phenotypes were observed in the ugt84b1 mutants under laboratory growth conditions. Moreover, the overexpression of UGT84B1 resulted in auxin-deficient root phenotypes and changes in the IAA and PAA levels. Our results indicate that UGT84B1 plays an important role in IAA and PAA homeostasis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosiltransferases/metabolismo , Ácidos Indolacéticos/metabolismo , Fenilacetatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Mutação , Plantas Geneticamente Modificadas
10.
Plant Physiol ; 180(2): 1152-1165, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936248

RESUMO

Polar auxin transport plays a pivotal role in plant growth and development. PIN-FORMED (PIN) auxin efflux carriers regulate directional auxin movement by establishing local auxin maxima, minima, and gradients that drive multiple developmental processes and responses to environmental signals. Auxin has been proposed to modulate its own transport by regulating subcellular PIN trafficking via processes such as clathrin-mediated PIN endocytosis and constitutive recycling. Here, we further investigated the mechanisms by which auxin affects PIN trafficking by screening auxin analogs and identified pinstatic acid (PISA) as a positive modulator of polar auxin transport in Arabidopsis (Arabidopsis thaliana). PISA had an auxin-like effect on hypocotyl elongation and adventitious root formation via positive regulation of auxin transport. PISA did not activate SCFTIR1/AFB signaling and yet induced PIN accumulation at the cell surface by inhibiting PIN internalization from the plasma membrane. This work demonstrates PISA to be a promising chemical tool to dissect the regulatory mechanisms behind subcellular PIN trafficking and auxin transport.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Endocitose , Ácidos Indolacéticos/metabolismo , Fenilacetatos/farmacologia , Arabidopsis/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Gravitropismo/efeitos dos fármacos , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transdução de Sinais
11.
Bioorg Med Chem Lett ; 29(17): 2487-2492, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31345632

RESUMO

HTL/KAI2, a member of the α/ß-fold hydrolase superfamily, is known to be a receptor-like protein of lactone compounds and that triggers seed germination of Arabidopsis. However, the endogenous ligand and physiological roles of HTL/KAI2 have remained unclear. To understand the mechanism underlying seed germination involved in HTL/KAI2 signaling, it is necessary to identify the endogenous ligand of HTL/KAI2. To date, even a biosynthetic mutant of the ligand has not yet been isolated. Because exogenous agonistic chemicals can only be purchased in small amounts at high prices, the limited supply of those chemicals has hampered any large-scale experiments, such as mutant screening. Therefore, easily synthesized and scalable artificial agonist would remove the limitation of the chemical supply and contribute to the identification of the endogenous ligand of HTL/KAI2 and/or the biosynthetic mutants. In this study, we demonstrated that designed chemicals with a phenoxyfuranone scaffold potently stimulated seed germination via HTL/KAI2 in Arabidopsis. As a result of screening of these chemicals, we selected a representative compound with convincing selectivity. Here in, we provide a new promising synthetic agonist of HTL/KAI2.


Assuntos
Proteínas de Arabidopsis/agonistas , Arabidopsis/crescimento & desenvolvimento , Germinação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Furanos/síntese química , Furanos/química , Furanos/farmacologia , Germinação/efeitos dos fármacos , Hidrolases/metabolismo , Ligantes , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Temperatura
12.
Plant Cell Physiol ; 59(8): 1500-1510, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668988

RESUMO

The plant hormone auxin is involved in virtually every aspect of plant growth and development. A chemical genetic approach has greatly contributed to the identification of important genes in auxin biosynthesis, transport and signaling. Molecular genetic technologies and structural information for auxin regulatory components have accelerated the identification and characterization of many novel small molecule modulators in auxin biology. These modulators have been widely utilized to dissect auxin responses. Here we provide an overview of the structure, primary target, in planta activity and application of small molecule modulators in auxin biology.


Assuntos
Transporte Biológico/fisiologia , Ácidos Indolacéticos/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
13.
Phys Rev Lett ; 119(18): 180507, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219558

RESUMO

To implement fault-tolerant quantum computation with continuous variables, Gottesman-Kitaev-Preskill (GKP) qubits have been recognized as an important technological element. However, the analog outcome of GKP qubits, which includes beneficial information to improve the error tolerance, has been wasted, because the GKP qubits have been treated as only discrete variables. In this Letter, we propose a hybrid quantum error correction approach that combines digital information with the analog information of the GKP qubits using a maximum-likelihood method. As an example, we demonstrate that the three-qubit bit-flip code can correct double errors, whereas the conventional method based on majority voting on the binary measurement outcome can correct only a single error. As another example, we show that a concatenated code known as Knill's C_{4}/C_{6} code can achieve the hashing bound for the quantum capacity of the Gaussian quantum channel (GQC). To the best of our knowledge, this approach is the first attempt to draw both digital and analog information to improve quantum error correction performance and achieve the hashing bound for the quantum capacity of the GQC.

14.
ACS Omega ; 9(22): 23624-23633, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854554

RESUMO

Hydroxylation of aliphatic hydrocarbons requires highly reactive oxidants, but their strength can lead to undesired oxidation of the initially formed alcohols and solvents, undermining the product selectivity. To address these problems, we developed a novel catalytic system using fluorocarbon solvents. A cobalt complex supported by the fluorinated ligand, N,N,N',N',N″-pentakis-[CF3(CF2)7(CH2)3]-diethylenetriamine (Rf-deta), acts as an efficient catalyst [turnover number (TON) = 1203, turnover frequency = 51 ± 1 min-1] for cyclohexane hydroxylation with the m-chloroperbenzoic acid oxidant, achieving high alcohol selectivity (96%). Overoxidation to form cyclohexanone is minimized due to the separation of cyclohexanol from the reaction phase, comprising perfluoromethylcyclohexane and α,α,α-trifluorotoluene. The catalyst hydroxylates primary carbons (5 examples) and exhibits significant reactivity toward the terminal C-H bond of normal hexane (TON = 13). This system extends to the hydroxylation of the gaseous substrate butane, yielding the corresponding alcohols.

15.
Science ; 383(6680): 289-293, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236963

RESUMO

To harness the potential of a quantum computer, quantum information must be protected against error by encoding it into a logical state that is suitable for quantum error correction. The Gottesman-Kitaev-Preskill (GKP) qubit is a promising candidate because the required multiqubit operations are readily available at optical frequency. To date, however, GKP qubits have been demonstrated only at mechanical and microwave frequencies. We realized a GKP state in propagating light at telecommunication wavelength and verified it through homodyne measurements without loss corrections. The generation is based on interference of cat states, followed by homodyne measurements. Our final states exhibit nonclassicality and non-Gaussianity, including the trident shape of faint instances of GKP states. Improvements toward brighter, multipeaked GKP qubits will be the basis for quantum computation with light.

16.
Bioorg Med Chem Lett ; 21(16): 4905-8, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21741836

RESUMO

Strigolactones (SLs) are rhizosphere communication chemicals. Recent studies of highly branched mutants revealed that SL or its metabolites work as a phytohormone to inhibit shoot branching. When SLs are exogenously applied to the rice d10-1 mutant that has a highly branched phenotype caused by a defect in the SL biosynthesis gene (CCD8), they inhibit tiller bud outgrowth (branching in rice) of the mutant. We focused our attention on the SL function as a phytohormone and tried to find new chemicals mimicking the hormonal action of SL by screening chemicals that inhibit branching of rice d10-1 mutant. Fortunately, we found 5-(4-chlorophenoxy)-3-methylfuran-2(5H)-one (3a) as a new chemical possessing SL-like activity against the rice d10-1 mutant. Then, we prepared several derivatives of 3a (3b-3k) to examine their ability to inhibit shoot branching of rice d10-1. These derivatives were synthesized by a one-pot coupling reaction between phenols and halo butenolide to give 5-phenoxy 3-methylfuran-2(5H)-one (3) derivatives, which possess a common substructure with SLs. Some of the derivatives showed SL-like activity more potently than GR24, a typical SL derivative, in a rice assay. As SLs also show activity by inducing seed germination of root parasitic plants, the induction activity of these derivatives was also evaluated. Here we report the structure-activity relationships of these compounds.


Assuntos
Furanos/farmacologia , Lactonas/farmacologia , Mimetismo Molecular , Oryza/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Relação Dose-Resposta a Droga , Furanos/síntese química , Furanos/química , Germinação/efeitos dos fármacos , Lactonas/síntese química , Lactonas/química , Estrutura Molecular , Orobanche/efeitos dos fármacos , Orobanche/crescimento & desenvolvimento , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Brotos de Planta/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estereoisomerismo , Striga/efeitos dos fármacos , Striga/crescimento & desenvolvimento , Relação Estrutura-Atividade
17.
aBIOTECH ; 2(1): 1-13, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36304477

RESUMO

Strigolactones (SLs) are plant hormones that regulate the branching of plants and seed germination stimulants of root parasitic plants. As root parasites are a great threat to agricultural production, the use of SL agonists could be anticipated to provide an efficient method for regulating root parasites as suicidal germination inducers. A series of phenoxyfuranone-type SL mimics, termed debranones, has been reported to show potent bioactivities, including reduction of the tiller number on rice, and stimulation of seed germination in the root parasite Striga hermonthica. To exert both activities, two substituents on the phenyl ring of the molecules were important but at least a substituent at the 2-position must be an electron-withdrawing group. However, little is known about the effect of the properties of the substituents at the 2-position on bioactivities. Here, we found that different substituents at the 2-position give different preferences for bioactivities. Halogenated debranones were more effective than the others and SL agonist GR24 for inhibiting rice tiller but far less effective in the induction of S. hermonthica germination. Meanwhile, nitrile and methyl derivatives clearly stimulated the germination of S. hermonthica seeds. Although their IC50 values were 100 times higher than that of GR24 in the receptor competitive binding assay, their physiological activities were approximately 1/10 of GR24. These differences could be due to their uptake in plants and/or their physicochemical stability under our experimental conditions. These findings could support the design of more potent and selective SL agonists that could contribute to solving big agricultural issues.

18.
Nat Commun ; 12(1): 6752, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811366

RESUMO

Inactivation of the phytohormone auxin plays important roles in plant development, and several enzymes have been implicated in auxin inactivation. In this study, we show that the predominant natural auxin, indole-3-acetic acid (IAA), is mainly inactivated via the GH3-ILR1-DAO pathway. IAA is first converted to IAA-amino acid conjugates by GH3 IAA-amidosynthetases. The IAA-amino acid conjugates IAA-aspartate (IAA-Asp) and IAA-glutamate (IAA-Glu) are storage forms of IAA and can be converted back to IAA by ILR1/ILL amidohydrolases. We further show that DAO1 dioxygenase irreversibly oxidizes IAA-Asp and IAA-Glu into 2-oxindole-3-acetic acid-aspartate (oxIAA-Asp) and oxIAA-Glu, which are subsequently hydrolyzed by ILR1 to release inactive oxIAA. This work established a complete pathway for the oxidative inactivation of auxin and defines the roles played by auxin homeostasis in plant development.


Assuntos
Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Amidoidrolases , Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Ácido Aspártico , Dioxigenases , Regulação da Expressão Gênica de Plantas , Ácido Glutâmico , Homeostase , Hidrólise , Oxirredução , Estresse Oxidativo , Oxindóis/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/genética , Transdução de Sinais
19.
J Am Chem Soc ; 132(12): 4072-3, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20199023

RESUMO

The combined catalyst system of silver acetate with a chiral Schiff base ligand achieved asymmetric carbon dioxide incorporation into bispropargylic alcohols with desymmetrization to afford the corresponding cyclic carbonates with good-to-excellent enantiomeric excesses.

20.
Front Plant Sci ; 11: 577235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363551

RESUMO

Temperature is a critical environmental factor governing plant growth and development. The difference between day temperature (DT) and night temperature (NT), abbreviated as DIF, influences plant architecture. Subjecting plants to artificial DIF treatments is an effective strategy in ornamental horticulture. For example, negative DIF (when DT - NT < 0) generally inhibits stem elongation, resulting in dwarf plants. However, the mechanisms underlying stem growth regulation by DIF remains to be completely elucidated. In this study, we aimed to analyze the growth, transcriptome, and phytohormone profiles of tomato (Solanum lycopersicum) seedlings grown under different DIF treatments. Under positive DIF (when DT - NT > 0), in contrast to the control temperature (25°C/20°C, DT/NT), high temperature (30°C/25°C) increased stem length and thickness, as well as the number of xylem vessels. Conversely, compared with the positive high temperature DIF treatment (30°C/25°C), under negative DIF treatment (25°C/30°C) stem elongation was inhibited, but stem thickness and the number of xylem vessels were not affected. The negative DIF treatment decreased the expression of gibberellin (GA)-, auxin-, and cell wall-related genes in the epicotyl, as well as the concentrations of GAs and indole-3-acetic acid (IAA). The expression of these genes and concentrations of these hormones increased under high temperature compared to those under the control temperature positive DIF. Our results suggest that stem length in tomato seedlings is controlled by changes in GA and IAA biosynthesis in response to varying day and night temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA