Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci Res ; 99(10): 2558-2572, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245603

RESUMO

In athletes, long-term intensive training has been shown to increase unparalleled athletic ability and might induce brain plasticity. We evaluated the structural connectome of world-class gymnasts (WCGs), as mapped by diffusion-weighted magnetic resonance imaging probabilistic tractography and a multishell, multitissue constrained spherical deconvolution method to increase the precision of tractography at the tissue interfaces. The connectome was mapped in 10 Japanese male WCGs and in 10 age-matched male controls. Network-based statistic identified subnetworks with increased connectivity density in WCGs, involving the sensorimotor, default mode, attentional, visual, and limbic areas. It also revealed a significant association between the structural connectivity of some brain structures with functions closely related to the gymnastic skills and the D-score, which is used as an index of the gymnasts' specific physical abilities for each apparatus. Furthermore, graph theory analysis demonstrated the characteristics of brain anatomical topology in the WCGs. They displayed significantly increased global connectivity strength with decreased characteristic path length at the global level and higher nodal strength and degree in the sensorimotor, default mode, attention, and limbic/subcortical areas at the local level as compared with controls. Together, these findings extend the current understanding of neural mechanisms that distinguish WCGs from controls and suggest brain anatomical network plasticity in WCGs resulting from long-term intensive training. Future studies should assess the contribution of genetic or early-life environmental factors in the brain network organization of WCGs. Furthermore, the indices of brain topology (i.e., connection density and graph theory indices) could become markers for the objective evaluation of gymnastic performance.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Ginástica/fisiologia , Plasticidade Neuronal/fisiologia , Adolescente , Humanos , Masculino , Probabilidade , Adulto Jovem
2.
Eur J Sport Sci ; 23(6): 955-963, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35593181

RESUMO

This study aimed to examine how genetic polymorphisms related to muscular strength and flexibility influence artistic gymnastic performance in an attempt to identify a novel polymorphism associated with flexibility. In study 1, the passive straight-leg-raise (PSLR) score and aromatase gene CYP19A1 rs936306 polymorphism, a key enzyme for estrogen biosynthesis, were assessed in 278 individuals. In study 2, athletes (281 gymnasts and 1908 other athletes) were asked about their competition level, and gymnasts were assessed using the difficulty score (D-score) for each event. Muscular strength- (ACTN3 R577X rs1815739 and ACE I/D rs4341) and flexibility-related (ESR1 rs2234693 T/C and CYP19A1 rs936306 C/T) genetic polymorphisms were analyzed. In study 1, males with the CYP19A1 CT + TT genotype showed significantly higher PSLR scores than those with the CC genotype. In study 2, male gymnasts with the R allele of ACTN3 R577X showed a correlation with the floor, rings, vault, and total D-scores. In addition, male gymnasts with the C allele of ESR1 T/C and T allele of CYP19A1 C/T polymorphisms were correlated with the pommel horse, parallel bars, horizontal bar, and total D-scores. Furthermore, genotype scores of these three polymorphisms correlated with the total D-scores and competition levels in male gymnasts. In contrast, no such associations were observed in female gymnasts. Our findings suggest that muscular strength- and flexibility-related polymorphisms play important roles in achieving high performance in male artistic gymnastics by specifically influencing the performance of events that require muscular strength and flexibility, respectively.HighlightsEstrogen-related CYP19A1 polymorphism is a novel determinant of flexibility in males.Muscular strength- and flexibility-related polymorphisms play important roles in high performance in male artistic gymnastics.Genotypes of ACTN3 R577X, ESR1 rs2234693, and CYP19A1 rs936306 may contribute to training plan optimization and event selection in artistic gymnastics.


Assuntos
População do Leste Asiático , Ginástica , Força Muscular , Amplitude de Movimento Articular , Feminino , Humanos , Masculino , Actinina/genética , Desempenho Atlético/fisiologia , Genótipo , Ginástica/fisiologia , Força Muscular/genética , Polimorfismo Genético , Amplitude de Movimento Articular/genética
3.
J Physiol Sci ; 70(1): 43, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948133

RESUMO

The relationship between long-term intensive training and brain plasticity in gymnasts has recently been reported. However, the relationship between abilities in different gymnastic events and brain structural changes has not been explored. This study aimed to evaluate the correlation between world-class gymnasts (WCGs)' specific abilities in different gymnastics events and their gray matter (GM) volume. Ten right-handed Japanese male WCGs and 10 right-handed gender- and age-matched controls with no history of gymnastic training participated in this study. Whole brain three-dimensional T1-weighted images (magnetization-prepared rapid gradient-echo sequence) with 0.90 mm3 voxels were obtained using a 3 T-MRI scanner from each subject. Volume-based morphometry (VolBM) was used to compare GM volume differences between WCGs and controls. We then explored the correlation between specific gymnastic abilities using different gymnastic apparatuses, and GM volume. Significantly higher GM volumes (false discovery rate-corrected p < 0.05) in the inferior parietal lobule, middle temporal gyrus, precentral gyrus, rostral middle frontal gyrus, and superior frontal gyrus were demonstrated in WCGs, compared with controls using VolBM. Moreover, significant positive correlations were observed between brain regions and the difficulty scores for each gymnastic event, for example, rings and inferior parietal lobule and parallel bars and rostral middle frontal gyrus. These results may reflect the neural basis of an outstanding gymnastic ability resulting from brain plasticity in areas associated with spatial perception, vision, working memory, and motor control.


Assuntos
Atletas , Espessura Cortical do Cérebro , Mapeamento Encefálico , Substância Cinzenta/diagnóstico por imagem , Ginástica , Imageamento por Ressonância Magnética , Adolescente , Desempenho Atlético , Estudos de Casos e Controles , Substância Cinzenta/fisiologia , Humanos , Masculino , Plasticidade Neuronal , Tamanho do Órgão , Condicionamento Físico Humano , Valor Preditivo dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA