Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 302, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111048

RESUMO

G protein-coupled receptor 120 (GPR120, Ffar4) is a sensor for long-chain fatty acids including omega-3 polyunsaturated fatty acids (n-3 PUFAs) known for beneficial effects on inflammation, metabolism, and mood. GPR120 mediates the anti-inflammatory and insulin-sensitizing effects of n-3 PUFAs in peripheral tissues. The aim of this study was to determine the impact of GPR120 stimulation on microglial reactivity, neuroinflammation and sickness- and anxiety-like behaviors by acute proinflammatory insults. We found GPR120 mRNA to be enriched in  both murine and human microglia, and in situ hybridization revealed GPR120 expression in microglia of the nucleus accumbens (NAc) in mice. In a manner similar to or exceeding n-3 PUFAs, GPR120 agonism (Compound A, CpdA) strongly attenuated lipopolysaccharide (LPS)-induced proinflammatory marker expression in primary mouse microglia, including tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß), and inhibited nuclear factor-ĸB translocation to the nucleus. Central administration of CpdA to adult mice blunted LPS-induced hypolocomotion and anxiety-like behavior and reduced TNF-α, IL-1ß and IBA-1 (microglia marker) mRNA in the NAc, a brain region modulating anxiety and motivation and implicated in neuroinflammation-induced mood deficits. GPR120 agonist pre-treatment attenuated NAc microglia reactivity and alleviated sickness-like behaviors elicited by central injection TNF-α and IL-1ß. These findings suggest that microglial GPR120 contributes to neuroimmune regulation and behavioral changes in response to acute infection and elevated brain cytokines. GPR120 may participate in the protective action of n-3 PUFAs at the neural and behavioral level and offers potential as treatment target for neuroinflammatory conditions.


Assuntos
Ácidos Graxos Ômega-3 , Microglia , Receptores Acoplados a Proteínas G , Adulto , Animais , Humanos , Camundongos , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Doenças Neuroinflamatórias , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
Neuroimage ; 259: 119415, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35760293

RESUMO

Individuals living with obesity tend to have increased brain age, reflecting poorer brain health likely due to grey and white matter atrophy related to obesity. However, it is unclear if older brain age associated with obesity can be reversed following weight loss and cardiometabolic health improvement. The aim of this study was to assess the impact of weight loss and cardiometabolic improvement following bariatric surgery on brain health, as measured by change in brain age estimated based on voxel-based morphometry (VBM) measurements. We used three distinct datasets to perform this study: 1) CamCAN dataset to train the brain age prediction model, 2) Human Connectome Project (HCP) dataset to investigate whether individuals with obesity have greater brain age than individuals with normal weight, and 3) pre-surgery, as well as 4, 12, and 24 month post-surgery data from participants (n = 87, age: 44.0 ± 9.2 years, BMI: 43.9 ± 4.2 kg/m2) who underwent a bariatric surgery to investigate whether weight loss and cardiometabolic improvement as a result of bariatric surgery lowers the brain age. As expected, our results from the HCP dataset showed a higher brain age for individuals with obesity compared to individuals with normal weight (T-value = 7.08, p-value < 0.0001). We also found significant improvement in brain health, indicated by a decrease of 2.9 and 5.6 years in adjusted delta age at 12 and 24 months following bariatric surgery compared to baseline (p-value < 0.0005 for both). While the overall effect seemed to be driven by a global change across all brain regions and not from a specific region, our exploratory analysis showed lower delta age in certain brain regions (mainly in somatomotor, visual, and ventral attention networks) at 24 months. This reduced age was also associated with post-surgery improvements in BMI, systolic/diastolic blood pressure, and HOMA-IR (T-valueBMI=4.29, T-valueSBP=4.67, T-valueDBP=4.12, T-valueHOMA-IR=3.16, all p-values < 0.05). In conclusion, these results suggest that obesity-related brain health abnormalities (as measured by delta age) might be reversed by bariatric surgery-induced weight loss and widespread improvements in cardiometabolic alterations.


Assuntos
Cirurgia Bariátrica , Doenças Cardiovasculares , Adulto , Encéfalo/diagnóstico por imagem , Pré-Escolar , Humanos , Lactente , Pessoa de Meia-Idade , Obesidade/cirurgia , Redução de Peso/fisiologia
3.
Neuroimage ; 241: 118419, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302967

RESUMO

BACKGROUND: Metabolic disorders associated with obesity could lead to alterations in brain structure and function. Whether these changes can be reversed after weight loss is unclear. Bariatric surgery provides a unique opportunity to address these questions because it induces marked weight loss and metabolic improvements which in turn may impact the brain in a longitudinal fashion. Previous studies found widespread changes in grey matter (GM) and white matter (WM) after bariatric surgery. However, findings regarding changes in spontaneous neural activity following surgery, as assessed with the fractional amplitude of low frequency fluctuations (fALFF) and regional homogeneity of neural activity (ReHo), are scarce and heterogenous. In this study, we used a longitudinal design to examine the changes in spontaneous neural activity after bariatric surgery (comparing pre- to post-surgery), and to determine whether these changes are related to cardiometabolic variables. METHODS: The study included 57 participants with severe obesity (mean BMI=43.1 ± 4.3 kg/m2) who underwent sleeve gastrectomy (SG), biliopancreatic diversion with duodenal switch (BPD), or Roux-en-Y gastric bypass (RYGB), scanned prior to bariatric surgery and at follow-up visits of 4 months (N = 36), 12 months (N = 29), and 24 months (N = 14) after surgery. We examined fALFF and ReHo measures across 1022 cortical and subcortical regions (based on combined Schaeffer-Xiao parcellations) using a linear mixed effect model. Voxel-based morphometry (VBM) based on T1-weighted images was also used to measure GM density in the same regions. We also used an independent sample from the Human Connectome Project (HCP) to assess regional differences between individuals who had normal-weight (N = 46) or severe obesity (N = 46). RESULTS: We found a global increase in the fALFF signal with greater increase within dorsolateral prefrontal cortex, precuneus, inferior temporal gyrus, and visual cortex. This effect was more significant 4 months after surgery. The increase within dorsolateral prefrontal cortex, temporal gyrus, and visual cortex was more limited after 12 months and only present in the visual cortex after 24 months. These increases in neural activity measured by fALFF were also significantly associated with the increase in GM density following surgery. Furthermore, the increase in neural activity was significantly related to post-surgery weight loss and improvement in cardiometabolic variables, such as blood pressure. In the independent HCP sample, normal-weight participants had higher global and regional fALFF signals, mainly in dorsolateral/medial frontal cortex, precuneus and middle/inferior temporal gyrus compared to the obese participants. These BMI-related differences in fALFF were associated with the increase in fALFF 4 months post-surgery especially in regions involved in control, default mode and dorsal attention networks. CONCLUSIONS: Bariatric surgery-induced weight loss and improvement in metabolic factors are associated with widespread global and regional increases in neural activity, as measured by fALFF signal. These findings alongside the higher fALFF signal in normal-weight participants compared to participants with severe obesity in an independent dataset suggest an early recovery in the neural activity signal level after the surgery.


Assuntos
Cirurgia Bariátrica/tendências , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/tendências , Obesidade/diagnóstico por imagem , Descanso/fisiologia , Adulto , Cirurgia Bariátrica/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Obesidade/cirurgia , Cuidados Pós-Operatórios/métodos , Cuidados Pré-Operatórios/métodos
4.
Brain Behav Immun ; 95: 391-400, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872705

RESUMO

The central signaling actions of cytokines are mediated by signal transducer and activator of transcription (STAT3). STAT3 activation plays a pivotal role in the behavioral responses to the adiposity hormone leptin, including in midbrain dopamine (DA) neurons where it mediates the influence of leptin to diminish physical activity and running reward in male mice. Leptin also has anxiolytic effects which have been tied to the mesolimbic DA system. To assess the contribution of STAT3 signaling in mesolimbic DA neurons on feeding, mesolimbic DA tone and anxiodepressive behaviors in female mice, we generated DA-specific STAT3 knockout mice by crossing mice expressing Cre under the control of the dopamine transporter with STAT3-LoxP mice. Feeding, locomotion, wheel running, conditioned place preference for palatable food and amphetamine locomotor sensitization were unaffected by DA-specific STAT3 deletion. Conversely, knockout mice exhibited heightened anxiety-like behavior (open field test and elevated plus maze) along with increased basal and stress-induced plasma corticosterone, whereas indices of behavioral despair (forced swim and tail-suspension tasks) were unchanged. In accordance with biochemical evidence of increased D1 receptor signaling (phospho-DARPP32Thr34) in the central nucleus of the amygdala (CeA) of knockout mice, local microinjections of a D1 receptor antagonist reversed the anxiogenic phenotype of knockout mice. In addition to alluding to sex differences in the signaling mechanisms mediating anxiety-like behavior, our findings suggest that activation of STAT3 in midbrain dopamine neurons projecting to the CeA dampens anxiety in a D1R-dependent manner in female mice.


Assuntos
Neurônios Dopaminérgicos , Atividade Motora , Animais , Ansiedade , Feminino , Masculino , Mesencéfalo , Camundongos , Camundongos Knockout
5.
Int J Obes (Lond) ; 44(9): 1936-1945, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546855

RESUMO

OBJECTIVE: Obesity significantly elevates the odds of developing mood disorders. Chronic consumption of a saturated high-fat diet (HFD) elicits anxiodepressive behavior in a manner linked to metabolic dysfunction and neuroinflammation in mice. Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA) can improve both metabolic and mood impairments by relieving inflammation. Despite these findings, the effects of n-3 PUFA supplementation on energy homeostasis, anxiodepressive behavior, brain lipid composition, and gliosis in the diet-induced obese state are unclear. METHODS: Male C57Bl/6J mice were fed a saturated high-fat diet (HFD) or chow for 20 weeks. During the last 5 weeks mice received daily gavage ("supplementation") of fish oil (FO) enriched with equal amounts of docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) or control corn oil. Food intake and body weight were measured throughout while additional metabolic parameters and anxiety- and despair-like behavior (elevated-plus maze, light-dark box, and forced swim tasks) were evaluated during the final week of supplementation. Forebrain lipid composition and markers of microglia activation and astrogliosis were assessed by gas chromatography-mass spectrometry and real-time PCR, respectively. RESULTS: Five weeks of FO supplementation corrected glucose intolerance and attenuated hyperphagia in HFD-induced obese mice without affecting adipose mass. FO supplementation also defended against the anxiogenic and depressive-like effects of HFD. Brain lipids, particularly anti-inflammatory PUFA, were diminished by HFD, whereas FO restored levels beyond control values. Gene expression markers of brain reactive gliosis were supressed by FO. CONCLUSIONS: Supplementing a saturated HFD with FO rich in EPA and DHA corrects glucose intolerance, inhibits food intake, suppresses anxiodepressive behaviors, enhances anti-inflammatory brain lipids, and dampens indices of brain gliosis in obese mice. Together, these findings support increasing dietary n-3 PUFA for the treatment of metabolic and mood disturbances associated with excess fat intake and obesity.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo , Dieta Hiperlipídica/efeitos adversos , Óleos de Peixe/farmacologia , Obesidade , Tecido Adiposo/efeitos dos fármacos , Animais , Ansiedade , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Química Encefálica/efeitos dos fármacos , Depressão , Suplementos Nutricionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/psicologia
6.
Med Ref Serv Q ; 38(1): 87-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30942680

RESUMO

The primary goal of this project is to understand how each National Cancer Institute-designated cancer center library, and all libraries that support cancer research, function within their institutions. Through an in-depth survey focused on three major areas (staff, content and tools procurement, and user services), the research team hopes to determine how a cancer-centric library can be successful in supporting quality patient care, research excellence, and education. Additionally, the survey will examine the necessary minimum staffing levels for librarians and information professionals based on organizational size and degree of research focus. The survey will seek out the new skills librarians will need to deliver optimal services. The survey will also explore how content libraries purchase reflects and maps to constituents' current medical and research activities. Libraries within a research intense environment have a responsibility to align with researchers and health care professionals to provide resources and services that support their workflows. Cancer libraries need to be attuned to their institutions' missions, whether that includes excellent patient care, research endeavors, or cutting-edge educational programs. The information gathered from the survey will provide data for this research team to define the vision and standards of excellence for a cancer specialized research library.


Assuntos
Bases de Dados Bibliográficas/normas , Armazenamento e Recuperação da Informação/normas , Bibliotecas Médicas/normas , Desenvolvimento de Coleções em Bibliotecas/normas , Levantamentos de Bibliotecas/normas , Neoplasias , Bases de Dados Bibliográficas/tendências , Previsões , Humanos , Armazenamento e Recuperação da Informação/tendências , Bibliotecas Médicas/tendências , Desenvolvimento de Coleções em Bibliotecas/tendências , National Cancer Institute (U.S.) , Estados Unidos
7.
Mine Water Environ ; 37(1): 31-41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31666771

RESUMO

The exposure of readily soluble components of overburden materials from surface coal mining to air and water results in mineral oxidation and carbonate mineral dissolution, thus increasing coal mine water conductivity. A conductivity benchmark of 300 µS/cm for mine water discharges in the Appalachian region has been suggested to protect aquatic life and the environment. A USGS screening-level leach test was applied to individual strata from three cores collected from a surface mine site in the Central Appalachian region to generate preliminary conductivity rankings, which were used to classify strata for two disposal scenarios: (i) Unmodified Scenario, which included all extracted strata and (ii) Modified Scenario, which excluded 15% (by mass) of the overburden materials with the highest conductivities. We evaluated overburden leaching conductivity using EPA Method 1627 in 18 dry-wet cycles, generating conductivities of 1,020-1,150 µS/cm for the Unmodified Scenario and 624-979 µS/cm for the Modified Scenario. Hence, overburden segregation was successful in reducing the leachate conductivity, but did not reach the proposed benchmark. The leachate was dominated by sulfate in the first four cycles and by bicarbonates in cycles 5-18 in columns with higher sulfur content, while bicarbonates were dominant throughout experiments with lower sulfur content in overburden. The use of conductivity rankings, isolation of potentially problematic overburden strata, and appropriate materials management could reduce conductivity in Central Appalachian streams and other surface mining areas.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26888796

RESUMO

BACKGROUND: GPR120 (FFAR4) is a G-protein coupled receptor implicated in the development of obesity and the antiinflammatory and insulin-sensitizing effects of omega-3 (ω-3) polyunsaturated fatty acids. Increasing central ω-3 polyunsaturated fatty acid levels has been shown to have both anorectic and anxiolytic actions. Despite the strong clinical interest in GPR120, its role in the brain is largely unknown, and thus we sought to determine the impact of central GPR120 pharmacological activation on energy balance, food reward, and anxiety-like behavior. METHODS: Male C57Bl/6 mice with intracerebroventricular cannulae received a single injection (0.1 or 1 µM) or continuous 2-week infusion (1 µM/d; mini-pump) of a GPR120 agonist or vehicle. Free-feeding intake, operant lever-pressing for palatable food, energy expenditure (indirect calorimetry), and body weight were measured. GPR120 mRNA expression was measured in pertinent brain areas. Anxiety-like behavior was assessed in the elevated-plus maze and open field test. RESULTS: GPR120 agonist injections substantially reduced chow intake during 4 hours postinjection, suppressed the rewarding effects of high-fat/-sugar food, and blunted approach-avoidance behavior in the open field. Conversely, prolonged central GPR120 agonist infusions reduced anxiety-like behavior in the elevated-plus maze and open field, yet failed to affect free-feeding intake, energy expenditure, and body weight on a high-fat diet. CONCLUSION: Acute reductions in food intake and food reward suggest that GPR120 could mediate the effects of central ω-3 polyunsaturated fatty acids to inhibit appetite. The anxiolytic effect elicited by GPR120 agonist infusions favors the testing of compounds that can enter the brain to activate GPR120 for the mitigation of anxiety.


Assuntos
Ansiedade/prevenção & controle , Ingestão de Alimentos/fisiologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/fisiologia , Recompensa , Animais , Benzofuranos/administração & dosagem , Benzofuranos/farmacologia , Peso Corporal/efeitos dos fármacos , Condicionamento Operante/fisiologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Atividade Motora/efeitos dos fármacos , Receptores Acoplados a Proteínas G/biossíntese , Sulfonas/administração & dosagem , Sulfonas/farmacologia
9.
Stress ; 18(4): 381-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303312

RESUMO

This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions.


Assuntos
Comportamento de Escolha , Ingestão de Alimentos/psicologia , Emoções , Comportamento Alimentar/psicologia , Estresse Psicológico/psicologia , Animais , Dieta , Gorduras na Dieta , Sacarose Alimentar , Ingestão de Alimentos/fisiologia , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Macaca mulatta , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Recompensa , Estresse Psicológico/metabolismo
10.
Med Ref Serv Q ; 34(2): 202-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25927512

RESUMO

The clinical librarian used a restricted literature searching and quality-filtering approach to provide relevant clinical evidence for the use of cancer molecular biomarkers by institutional policy makers and clinicians in the rapid review process. The librarian-provided evidence was compared with the cited references in the institutional molecular biomarker algorithm. The overall incorporation rate of the librarian-provided references into the algorithm was above 80%. This study suggests the usefulness of clinical librarian expertise for clinical practice. The searching and filtering methods for high-level evidence can be adopted by information professionals who are involved in the rapid literature review.


Assuntos
Biomarcadores Tumorais , Armazenamento e Recuperação da Informação/métodos , Bibliotecários , Papel Profissional , Medicina Baseada em Evidências , Humanos , Fatores de Tempo
11.
J Biol Chem ; 288(52): 37216-29, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24240094

RESUMO

Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrócitos/metabolismo , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Glucose/metabolismo , Hipotálamo Médio/metabolismo , Neurônios/metabolismo , Animais , Astrócitos/citologia , Linhagem Celular , Hipotálamo Médio/citologia , Neurônios/citologia , Oxirredução , Ratos , Ratos Wistar
12.
Physiol Behav ; 276: 114474, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272107

RESUMO

Nausea is an uncomfortable sensation that accompanies many therapeutics, especially diabetes treatments involving glucagon-like peptide-1 receptor (GLP1R) agonists. Recent studies in mice have revealed that GLP1R-expressing neurons in the area postrema play critical roles in nausea. Here, we characterized a ligand-conjugated saporin that can efficiently ablate GLP1R+ cells from humans, mice, and the Suncus murinus, a small animal model capable of emesis. This new tool provides a strategy to manipulate specific neural pathways in the area postrema in the Suncus murinus and may help elucidate roles of area postrema GLP1R+ neurons in emesis during therapeutics involving GLP1R agonists.


Assuntos
Área Postrema , Receptor do Peptídeo Semelhante ao Glucagon 1 , Animais , Humanos , Camundongos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Náusea , Neurônios/metabolismo , Vômito/metabolismo , Musaranhos
13.
Neurogastroenterol Motil ; 36(3): e14749, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316631

RESUMO

BACKGROUND: Gastric myoelectric signals have been the focus of extensive research; although it is unclear how general anesthesia affects these signals, and studies have often been conducted under general anesthesia. Here, we explore this issue directly by recording gastric myoelectric signals during awake and anesthetized states in the ferret and explore the contribution of behavioral movement to observed changes in signal power. METHODS: Ferrets were surgically implanted with electrodes to record gastric myoelectric activity from the serosal surface of the stomach, and, following recovery, were tested in awake and isoflurane-anesthetized conditions. Video recordings were also analyzed during awake experiments to compare myoelectric activity during behavioral movement and rest. KEY RESULTS: A significant decrease in gastric myoelectric signal power was detected under isoflurane anesthesia compared to the awake condition. Moreover, a detailed analysis of the awake recordings indicates that behavioral movement is associated with increased signal power compared to rest. CONCLUSIONS & INFERENCES: These results suggest that both general anesthesia and behavioral movement can affect the signal power of gastric myoelectric recordings. In summary, caution should be taken in studying myoelectric data collected under anesthesia. Further, behavioral movement could have an important modulatory role on these signals, affecting their interpretation in clinical settings.


Assuntos
Anestesia , Isoflurano , Animais , Isoflurano/farmacologia , Furões , Estômago , Eletrodos , Complexo Mioelétrico Migratório
14.
PLoS One ; 18(7): e0289076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498882

RESUMO

Functional and motility-related gastrointestinal (GI) disorders affect nearly 40% percent of the population. Disturbances of GI myoelectric activity have been proposed to play a significant role in these disorders. A significant barrier to usage of these signals in diagnosis and treatment is the lack of consistent relationships between GI myoelectric features and function. A potential cause of this issue is the use of arbitrary classification criteria, such as percentage of power in tachygastric and bradygastric frequency bands. Here we applied automatic feature extraction using a deep neural network architecture on GI myoelectric signals from free-moving ferrets. For each animal, we recorded during baseline control and feeding conditions lasting for 1 h. Data were trained on a 1-dimensional residual convolutional network, followed by a fully connected layer, with a decision based on a sigmoidal output. For this 2-class problem, accuracy was 90%, sensitivity (feeding detection) was 90%, and specificity (baseline detection) was 89%. By comparison, approaches using hand-crafted features (e.g., SVM, random forest, and logistic regression) produced an accuracy from 54% to 82%, sensitivity from 46% to 84% and specificity from 66% to 80%. These results suggest that automatic feature extraction and deep neural networks could be useful to assess GI function for comparing baseline to an active functional GI state, such as feeding. In future testing, the current approach could be applied to determine normal and disease-related GI myoelectric patterns to diagnosis and assess patients with GI disease.


Assuntos
Furões , Redes Neurais de Computação , Animais , Trato Gastrointestinal , Algoritmo Florestas Aleatórias
15.
PLoS One ; 18(5): e0285092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141332

RESUMO

Variation in the electrical conductivity (EC) of water can reveal environmental disturbance and natural dynamics, including factors such as anthropogenic salinization. Broader application of open source (OS) EC sensors could provide an inexpensive method to measure water quality. While studies show that other water quality parameters can be robustly measured with sensors, a similar effort is needed to evaluate the performance of OS EC sensors. To address this need, we evaluated the accuracy (mean error, %) and precision (sample standard deviation) of OS EC sensors in the laboratory via comparison to EC calibration standards using three different OS and OS/commercial-hybrid (OS/C) EC sensors and data logger configurations and two commercial (C) EC sensors and data logger configurations. We also evaluated the effect of cable length (7.5 m and 30 m) and sensor calibration on OS sensor accuracy and precision. We found a significant difference between OS sensor mean accuracy (3.08%) and all other sensors combined (9.23%). Our study also found that EC sensor precision decreased across all sensor configurations with increasing calibration standard EC. There was also a significant difference between OS sensor mean precision (2.85 µS/cm) and the mean precision of all other sensors combined (9.12 µS/cm). Cable length did not affect OS sensor precision. Furthermore, our results suggest that future research should include evaluating how performance is impacted by combining OS sensors with commercial data loggers as this study found significantly decreased performance in OS/commercial-hybrid sensor configurations. To increase confidence in the reliability of OS sensor data, more studies such as ours are needed to further quantify OS sensor performance in terms of accuracy and precision across different settings and OS sensor and data collection platform configurations.


Assuntos
Reprodutibilidade dos Testes , Calibragem , Condutividade Elétrica
16.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36865110

RESUMO

BACKGROUND: Gastrointestinal myoelectric signals have been the focus of extensive research; although it is unclear how general anesthesia affects these signals, studies have often been conducted under general anesthesia. Here, we explore this issue directly by recording gastric myoelectric signals during awake and anesthetized states in the ferret and also explore the contribution of behavioral movement to observed changes in signal power. METHODS: Ferrets were surgically implanted with electrodes to record gastric myoelectric activity from the serosal surface of the stomach, and, following recovery, were tested in awake and isoflurane-anesthetized conditions. Video recordings were also analyzed during awake experiments to compare myoelectric activity during behavioral movement and rest. KEY RESULTS: A significant decrease in gastric myoelectric signal power was detected under isoflurane anesthesia compared to the awake condition. Moreover, a detailed analysis of the awake recordings indicates that behavioral movement is associated with increased signal power compared to rest. CONCLUSIONS & INFERENCES: These results suggest that both general anesthesia and behavioral movement can affect the amplitude of gastric myoelectric. In summary, caution should be taken in studying myoelectric data collected under anesthesia. Further, behavioral movement could have an important modulatory role on these signals, affecting their interpretation in clinical settings.

17.
J Biol Chem ; 286(11): 9360-72, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21233214

RESUMO

Impairments in axonal dopamine release are associated with neurological disorders such as schizophrenia and attention deficit hyperactivity disorder and pathophysiological conditions promoting drug abuse and obesity. The D2 dopamine autoreceptor (D2-AR) exerts tight regulatory control of axonal dopamine (DA) release through a mechanism suggested to involve K(+) channels. To evaluate the contribution of Kv1 voltage-gated potassium channels of the Shaker gene family to the regulation of axonal DA release by the D2-AR, the present study employed expression analyses, real time measurements of striatal DA overflow, K(+) current measurements and immunoprecipitation assays. Kv1.1, -1.2, -1.3, and -1.6 mRNA and protein were detected in midbrain DA neurons purified by fluorescence-activated cell sorting and in primary DA neuron cultures. In addition, Kv1.1, -1.2, and -1.6 were localized to DA axonal processes in the dorsal striatum. By means of fast scan cyclic voltammetry in striatal slice preparations, we found that the inhibition of stimulation-evoked DA overflow by a D2 agonist was attenuated by Kv1.1, -1.2, and -1.6 toxin blockers. A particular role for the Kv1.2 subunit in the process whereby axonal D2-AR inhibits DA overflow was established with the use of a selective Kv1.2 blocker and Kv1.2 knock-out mice. Moreover, we demonstrate the ability of D2-AR activation to increase Kv1.2 currents in co-transfected cells and its reliance on Gßγ subunit signaling along with the physical coupling of D2-AR and Kv1.2-containing channels in striatal tissue. These findings underline the contribution of Kv1.2 in the regulation of nigrostriatal DA release by the D2-AR and thereby offer a novel mechanism by which DA release is regulated.


Assuntos
Axônios/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Canal de Potássio Kv1.2/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/fisiologia , Animais , Dopamina/genética , Agonistas de Dopamina/farmacologia , Canal de Potássio Kv1.2/genética , Masculino , Camundongos , Camundongos Knockout , Receptores de Dopamina D2/genética , Transdução de Sinais/efeitos dos fármacos
18.
JAMA ; 308(9): 898-908, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22948700

RESUMO

CONTEXT: Concerns exist regarding the potential development of malignancies in patients with rheumatoid arthritis (RA) who are receiving biologic response modifiers (BRMs). OBJECTIVE: To assess the risk of malignancy in patients with RA enrolled in randomized controlled trials (RCTs) of BRMs. DATA SOURCES: Electronic databases, conference proceedings, and websites of regulatory agencies were searched for RCTs evaluating abatacept, adalimumab, anakinra, certolizumab, etanercept, golimumab, infliximab, rituximab, and tocilizumab in RA from inception through July 9, 2012. STUDY SELECTION: Independent selection of studies included RCTs that compared the safety of any BRMs used in RA patients with placebo and/or any traditional disease-modifying antirheumatic drugs with a minimum of 24 weeks of follow-up. DATA EXTRACTION: Independent reviewers selected studies and extracted data on quality and outcomes. Pooled estimates and 95% confidence intervals were calculated for each BRM. RESULTS: Sixty-three RCTs with 29,423 patients were analyzed. No statistically significant increased risk of developing malignancy was observed. Of the 29,423 patients, 211 developed a malignancy during the trial (118 solid tumors, 48 skin cancers, 14 lymphomas, 5 hematologic nonlymphomas, and 26 not specified). The incidence rate for any malignancy during the first year of therapy was very low in the BRM plus methotrexate group (0.77%; 95% CI, 0.65%-0.92%), the BRM monotherapy group (0.64%; 95% CI, 0.42%-0.95%), and the controls (0.66%; 95% CI, 0.52%-0.84%). Anakinra plus methotrexate showed lower odds compared with methotrexate alone (Peto odds ratio, 0.11; 95% CI, 0.03-0.45). No statistically significant risk was observed for specific cancer sites, although the Peto odds ratio for lymphoma was 2.1 (95% CI, 0.55-8.4) in patients receiving tumor necrosis factor inhibitors compared with controls. CONCLUSION: The use of BRMs among patients with RA included in RCTs of at least 6 months' duration was not significantly associated with an increased risk of malignancy compared with other disease-modifying antirheumatic drugs or with placebo.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Fatores Imunológicos/efeitos adversos , Neoplasias/epidemiologia , Humanos , Fatores Imunológicos/uso terapêutico , Neoplasias/induzido quimicamente , Razão de Chances , Ensaios Clínicos Controlados Aleatórios como Assunto , Risco
19.
Trends Endocrinol Metab ; 33(1): 18-35, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34750064

RESUMO

The incidence of depression and anxiety is amplified by obesity. Mounting evidence reveals that the psychiatric consequences of obesity stem from poor diet, inactivity, and visceral adipose accumulation. Resulting metabolic and vascular dysfunction, including inflammation, insulin and leptin resistance, and hypertension, have emerged as key risks to depression and anxiety development. Recent research advancements are exposing the important contribution of these different corollaries of obesity and their impact on neuroimmune status and the neural circuits controlling mood and emotional states. Along these lines, this review connects the clinical manifestations of depression and anxiety in obesity to our current understanding of the origins and biology of immunometabolic threats to central nervous system function and behavior.


Assuntos
Ansiedade , Depressão , Depressão/epidemiologia , Depressão/etiologia , Depressão/metabolismo , Humanos , Inflamação/metabolismo , Obesidade/complicações , Obesidade/epidemiologia , Prevalência
20.
J Neuroendocrinol ; 34(12): e13218, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471907

RESUMO

Acyl-CoA binding protein (ACBP), also known as diazepam binding inhibitor (DBI), has recently emerged as a hypothalamic and brainstem gliopeptide regulating energy balance. Previous work has shown that the ACBP-derived octadecaneuropeptide exerts strong anorectic action via proopiomelanocortin (POMC) neuron activation and the melanocortin-4 receptor. Importantly, targeted ACBP loss-of-function in astrocytes promotes hyperphagia and diet-induced obesity while its overexpression in arcuate astrocytes reduces feeding and body weight. Despite this knowledge, the role of astroglial ACBP in adaptive feeding and metabolic responses to acute metabolic challenges has not been investigated. Using different paradigms, we found that ACBP deletion in glial fibrillary acidic protein (GFAP)-positive astrocytes does not affect weight loss when obese male mice are transitioned from a high fat diet to a chow diet, nor metabolic parameters in mice fed with a normal chow diet (e.g., energy expenditure, body temperature) during fasting, cold exposure and at thermoneutrality. In contrast, astroglial ACBP deletion impairs meal pattern and feeding responses during refeeding after a fast and during cold exposure, thereby showing that ACBP is required to stimulate feeding in states of increased energy demand. These findings challenge the general view that astroglial ACBP exerts anorectic effects and suggest that regulation of feeding by ACBP is dependent on metabolic status.


Assuntos
Depressores do Apetite , Inibidor da Ligação a Diazepam , Metabolismo Energético , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Metabolismo Energético/fisiologia , Hiperfagia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA