Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Heart Vessels ; 39(2): 123-134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37777673

RESUMO

Endothelin-1 (ET-1), produced by vascular endothelial cells, plays a pivotal role in the regulation of vascular tone. Isomaltulose, a naturally occurring sweetener and structural isomer of sucrose, reduces postprandial hyperglycemia, but its effect on arteriosclerosis due to hyperglycemia is unknown. The effects of 12 weeks of isomaltulose administration on ET-1 levels, a peptide that regulates arterial stiffness, blood pressure, and vascular tone, were tested before and after an oral glucose tolerance test. Fifty-four healthy middle-aged and older adults (30 men and 24 women) were divided into two groups: (1) a 25 g isomaltulose jelly drink intake group (Group I, 27 participants, mean age 55 ± 1 years) and (2) a sucrose jelly drink intake group (Group S, 27 participants, mean age 55 ± 1 years), each consuming isomaltulose or sucrose daily for 12 weeks, and a randomized, controlled study was conducted. Participants visited the laboratory before the intervention and 4, 8, and 12 weeks after the intervention to measure carotid-femoral (cf) and brachial-ankle (ba) pulse wave velocity (PWV), systolic blood pressure (BP), plasma glucose (PG), insulin, and ET-1 levels before and 60 and 120 min after a 75-g OGTT. baPWV, and ET-1 levels before intervention were significantly increased after 75-g OGTT compared to before 75-g OGTT in both groups (p < 0.05). The post-intervention baPWV, and ET-1 levels were significantly increased after 75-g OGTT in Group S compared to before 75-g OGTT (p < 0.05), whereas no significant changes were observed in Group I. These results suggest that consumption of isomaltulose, which has a lower GI than sucrose, is more effective in preventing the increases in systemic arterial stiffness associated with postprandial hyperglycemia in healthy middle-aged and older adults.


Assuntos
Hiperglicemia , Isomaltose/análogos & derivados , Rigidez Vascular , Masculino , Pessoa de Meia-Idade , Idoso , Humanos , Feminino , Glicemia , Rigidez Vascular/fisiologia , Análise de Onda de Pulso , Células Endoteliais , Hiperglicemia/prevenção & controle , Pressão Sanguínea/fisiologia , Sacarose
2.
J Sports Sci Med ; 21(2): 191-199, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35719237

RESUMO

This study aimed to assess the effects of co-ingestion of carbohydrate with milk (MILK) and isocaloric carbohydrate beverage (CHO) on post-exercise recovery and subsequent exercise capacity, considering the menstrual cycle. This study included 12 women with regular menstrual cycles who completed four test days, which started with glycogen-depleting exercise using a cycle ergometer in the early follicular phase (EF) and late follicular phase (LF), followed by 240 min of recovery from the ingestion of 200 mL of CHO or MILK every 30 min immediately after the exercise (POST0) until 210 min post-exercise. After 240 min, participants performed an exercise capacity test. Blood samples and breathing gas samples were collected before the exercise (PRE), POST0, and 120 (POST120) and 240 min after the end of exercise (POST240) to determine the concentrations of estradiol, progesterone, blood glucose, blood lactate, free fatty acid (FFA), and insulin and the respiratory exchange ratio, fat oxidation, and carbohydrate oxidation. The exercise time at exercise capacity test was not significantly different in terms of menstrual cycle phases and recovery beverages ingested. However, there was a significant positive correlation between the exercise capacity test and area under the curve (AUC) of FFA concentrations from POST0 to POST240 in each group (EF + CHO, p < 0.05; LF + CHO, p < 0.05; EF + MILK, p < 0.01; and LF + MILK, p < 0.05). The AUC of FFA from POST120 to POST240 showed no difference between EF (CHO and MILK) and LF (CHO and MILK). However, the AUC of FFA concentrations from POST120 to POST240 was significantly greater in MILK (EF and LF) than that in CHO (EF and LF) (p < 0.05). In active women, circulating substrates and hormone concentrations during short recovery post-exercise are not affected by the menstrual cycle. However, MILK may affect circulating substrates during recovery and the exercise capacity after recovery.


Assuntos
Ciclo Menstrual , Consumo de Oxigênio , Glicemia , Ingestão de Alimentos , Exercício Físico , Feminino , Humanos
3.
J Sports Med Phys Fitness ; 63(11): 1165-1174, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37712928

RESUMO

BACKGROUND: Low-volume high-intensity interval training (HIIT) for weight loss has become prevalent in recent years, with increased excess post-exercise oxygen consumption (EPOC) as the mechanism. However, the influence of the menstrual cycle on EPOC and fat oxidation following low-volume HIIT is unclear. This study aimed to investigate the effect of the menstrual cycle on the increase in EPOC and fat oxidation after low-volume HIIT. METHODS: Twelve eumenorrheic women participated during their early follicular and luteal phases. On each experimental day, they performed low-volume HIIT comprising fifteen repeated 8 s sprint cycling tests with 12 s rests, for 5 min. Expired gas samples were collected before and every 60 min until 180 min post-exercise. EPOC was defined as the increase in oxygen consumption from the resting state, and the total EPOC and fat oxidation were calculated from the total time of each measurement. Blood samples for serum estradiol, progesterone, free fatty acids, blood glucose, lactate, and plasma noradrenaline were collected and assessed before immediately after, and at 180 min post-exercise and were assessed. RESULTS: Serum estradiol and progesterone were significantly higher in the luteal phase than the follicular phase (P<0.01 for both). No significant differences in total EPOC and fat oxidation were found between the menstrual phases. Serum free fatty acid, blood glucose, lactate, and plasma noradrenaline concentrations were not affected by the menstrual cycle. CONCLUSIONS: These results suggest that the menstrual cycle does not affect the increase in EPOC or fat oxidation after low-volume HIIT.


Assuntos
Treinamento Intervalado de Alta Intensidade , Feminino , Humanos , Glicemia , Progesterona , Metabolismo Energético , Ciclo Menstrual , Consumo de Oxigênio , Estradiol , Norepinefrina , Lactatos
4.
Front Physiol ; 14: 1294284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028805

RESUMO

Testosterone replacement therapy (TRT) in transgender men (TM) results in side effects such as elevated triglycerides and increased arterial stiffness. Exercise may be useful to ameliorate such effects, but no studies have examined the effects of acute aerobic exercise in TM. This study aimed to investigate the effects of acute aerobic exercise on arterial stiffness in TM. Thirty-six participants were included, comprising 12 TM (duration of TRT: 57.4 ± 30.3 months), 12 males and 12 females. All participants performed acute aerobic exercise on a treadmill at 50% heart rate reserve for 30 min. Arterial stiffness as measured by brachial-ankle pulse wave velocity (baPWV) was measured before exercise (Pre), 30 min after exercise (Post30), and 60 min after exercise (Post60). Serum sex hormone levels, and serum lipid profile were determined only before exercise. Serum low-density lipoprotein cholesterol (LDL-C) levels before exercise were significantly higher in TM than in males or females (males: p < 0.01; females: p < 0.05). At all points, baPWV in TM was significantly higher than in females (p < 0.05) and significantly lower than in males (p < 0.05). However, when comparing changes in baPWV over time in each group, significant decreases in Post30 and Post60 were seen in males compared to Pre (both p < 0.05), but no significant change after aerobic exercise was seen in TM or females. These results suggest that acute aerobic exercise yield different effects in TM than in males, but is unlikely to reduce arterial stiffness in TM receiving TRT.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35954552

RESUMO

We investigated the influence of the menstrual cycle (MC) on leukocyte response after exercise-induced muscle damage (EIMD). During the early follicular (E-FP, n = 12) or mid-luteal phase (M-LP, n = 12), 24 untrained females with eumenorrhea performed 60 eccentric exercises using nondominant arms. Blood samples were collected at pre- and 4, 48, and 96 h postexercise to analyze estradiol and progesterone concentrations, leukocyte count and fractionation, and creatine kinase (CK) activity. We also assessed the maximal voluntary isometric contraction torque of elbow flexion, range of motion in the elbow joint, upper-arm circumference, and muscle soreness as indirect muscle damage markers at pre-; immediately post-; and 4, 48, and 96 h postexercise. The percent change in neutrophil counts from pre- to 4 h postexercise was lower in M-LP than in E-FP (E-FP, 30.7% [15.9-65.7%] vs. M-LP, 10.3% [-2.3-30.0%]; median [interquartile range: 25-75%]; p = 0.068). Progesterone concentration at pre-exercise was significantly negatively correlated with the percent change in neutrophil counts from pre- to 4 h postexercise in M-LP (r = -0.650, p = 0.022). MC did not affect CK activity or other muscle damage markers. Thus, progesterone concentration rather than MC may be related to neutrophil response following EIMD.


Assuntos
Músculo Esquelético , Progesterona , Biomarcadores , Creatina Quinase , Feminino , Humanos , Leucócitos , Ciclo Menstrual , Músculo Esquelético/fisiologia
6.
Nutrients ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235549

RESUMO

In women, fat oxidation during exercise changes with the menstrual cycle. This study aimed to investigate the effect of green tea extract (GTE) ingestion on fat oxidation during exercise depending on the menstrual cycle phase. Ten women with regular menstrual cycles participated in this randomized, double-blind, crossover study. GTE or placebo was administered during the menstrual cycle's follicular phase (FP) and luteal phase (LP). Participants cycled for 30 min at 50% maximal workload, and a respiratory gas analysis was performed. Serum estradiol, progesterone, free fatty acid, plasma noradrenaline, blood glucose, and lactate concentrations were assessed before, during, and after the exercise. Fat oxidation, carbohydrate oxidation, and the respiratory exchange ratio (RER) were calculated using respiratory gas. Fat oxidation during the exercise was significantly higher in the FP than in the LP with the placebo (p < 0.05) but did not differ between the phases with GTE. Carbohydrate oxidation, serum-free fatty acid, plasma noradrenaline, blood glucose, and lactate concentrations were not significantly different between the phases in either trial. Our results suggest that GTE ingestion improves the decrease in fat oxidation in the LP.


Assuntos
Glicemia , Progesterona , Antioxidantes , Estudos Cross-Over , Ingestão de Alimentos , Estradiol , Ácidos Graxos não Esterificados , Feminino , Humanos , Lactatos , Ciclo Menstrual , Norepinefrina , Projetos Piloto , Extratos Vegetais/farmacologia , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA