Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12632, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168164

RESUMO

Hydrogen (H) is considered to be one of the candidates for light elements in the Earth's core, but the amount and timing of delivery have been unknown. We investigated the effects of sulfur (S), another candidate element in the core, on deuteration of iron (Fe) in iron-silicate-water system up to 6-12 GPa, ~ 1200 K using in situ neutron diffraction measurements. The sample initially contained saturated water (D2O) as Mg(OD)2 in the ideal composition (Fe-MgSiO3-D2O) of the primitive Earth. In the existence of water and sulfur, phase transitions of Fe, dehydration of Mg(OD)2, and formation of iron sulfide (FeS) and silicates occurred with increasing temperature. The deuterium (D) solubility (x) in iron deuterides (FeDx) increased with temperature and pressure, resulting in a maximum of x = 0.33(4) for the hydrous sample without S at 11.2 GPa and 1067 K. FeS was hardly deuterated until Fe deuteration had completed. The lower D concentrations in the S-containing system do not exceed the miscibility gap (x < ~ 0.4). Both H and S can be incorporated into solid Fe and other light elements could have dissolved into molten iron hydride and/or FeS during the later process of Earth's evolution.

2.
Phys Rev Lett ; 105(11): 115701, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20867586

RESUMO

Liquid B2O3 represents an archetypical oxide melt with a superhigh viscosity at the melting temperature. We present the results of the in situ x-ray diffraction study and the in situ viscosity measurements of liquid B2O3 under high pressure up to 8 GPa. Additionally, the 11B solid state NMR spectroscopy study of B2O3 glasses quenched from the melt at five different pressures has been carried out. Taken together, the results obtained provide understanding of the nature of structural transformations in liquid B2O3. The fraction of the boroxol rings in the melt structure rapidly decreases with pressure. From pressures of about 4.5 GPa, four-coordinated boron states begin to emerge sharply, reaching the fraction 40%-45% at 8 GPa. The viscosity of the B2O3 melt along the melting curve drops by 4 orders of magnitude as the pressure increases up to 5.5 GPa and remains unchanged on further pressure increase.

3.
Sci Rep ; 10(1): 9934, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555226

RESUMO

Neutron powder diffraction profiles were collected for iron deuteride (FeDx) while the temperature decreased from 1023 to 300 K for a pressure range of 4-6 gigapascal (GPa). The ε' deuteride with a double hexagonal close-packed (dhcp) structure, which coexisted with other stable or metastable deutrides at each temperature and pressure condition, formed solid solutions with a composition of FeD0.68(1) at 673 K and 6.1 GPa and FeD0.74(1) at 603 K and 4.8 GPa. Upon stepwise cooling to 300 K, the D-content x increased to a stoichiometric value of 1.0 to form monodeuteride FeD1.0. In the dhcp FeD1.0 at 300 K and 4.2 GPa, dissolved D atoms fully occupied the octahedral interstitial sites, slightly displaced from the octahedral centers in the dhcp metal lattice, and the dhcp sequence of close-packed Fe planes contained hcp-stacking faults at 12%. Magnetic moments with 2.11 ± 0.06 µB/Fe-atom aligned ferromagnetically in parallel on the Fe planes.

4.
J Synchrotron Radiat ; 16(Pt 6): 762-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19844011

RESUMO

An experimental system to measure the elastic wave velocities of hot-pressed polycrystalline samples at high pressure and high temperature has been installed at SPring-8. It uses a combination of the ultrasonic pulse-echo-overlap method and Kawai-type multi-anvil apparatus (SPEED-1500). X-ray radiographic imaging enables the sample length to be determined at high pressure and high temperature, which is indispensable for precise determination of elastic wave velocity. Precise measurements of the elastic wave velocities of various minerals have been determined at pressures up to 19 GPa and temperatures up to 1673 K. The experimental technique provides the precise elastic wave velocities of various materials corresponding to those in the Earth's mantle.

5.
J Synchrotron Radiat ; 16(Pt 6): 757-61, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19844010

RESUMO

A system for stress measurement under high pressure has been developed at beamline BL04B1, SPring-8, Japan. A Kawai-type multi-anvil apparatus, SPEED-1500, was used to pressurize polycrystalline KCl to 9.9 GPa in a mechanically anisotropic cell assembly with the KCl sample sandwiched between dense Al(2)O(3) pistons. The variation of deviatoric stress was determined from the lattice distortion measured using two-dimensional X-ray diffraction with monochromatic synchrotron X-rays. The low-pressure B1 phase transformed to the high-pressure polymorph B2 during compression. The deviatoric stress increased with increasing pressure in both the B1 and B2 phases except for the two-phase-coexisting region at a pressure of 2-3 GPa. This new system provides one of the technical foundations for conducting precise rheological measurements at conditions of the Earth's lower mantle.

6.
J Chem Phys ; 130(12): 121101, 2009 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-19334799

RESUMO

The discovery of a first-order phase transition in fluid phosphorus aroused renewed interest in polyamorphism in liquids with a locally tetrahedral molecular structure. We have performed in situ synchrotron x-ray diffraction measurements on tin tetraiodide, which consists of SnI(4) tetrahedral molecules at ambient pressure, and established that the liquid forms existing above and below 1.5 GPa, where the slope of the melting curve of the solid phase changes abruptly, have different structures. This discovery offers evidence of thermodynamically stable polyamorphism in general compounds as well as in elements. A possible phase diagram that includes the two amorphous states already found is proposed based on the pseudobinary regular solution model. The vertex-to-face orientation between the nearest molecules plays a key role in the transition from the low-pressure to the high-pressure liquid phase.

7.
Sci Rep ; 9(1): 12290, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444386

RESUMO

Hexagonal close-packed iron hydride, hcp FeHx, is absent from the conventional phase diagram of the Fe-H system, although hcp metallic Fe exists stably over extensive temperature (T) and pressure (P) conditions, including those corresponding to the Earth's inner core. In situ X-ray and neutron diffraction measurements at temperatures ranging from 298 to 1073 K and H pressures ranging from 4 to 7 GPa revealed that the hcp hydride was formed for FeHx compositions when x < 0.6. Hydrogen atoms occupied the octahedral interstitial sites of the host metal lattice both partially and randomly. The hcp hydride exhibited a H-induced volume expansion of 2.48(5) Å3/H-atom, which was larger than that of the face-centered cubic (fcc) hydride. The hcp hydride showed an increase in x with T, whereas the fcc hydride showed a corresponding decrease. The present study provides guidance for further investigations of the Fe-H system over an extensive x-T-P region.

8.
Rev Sci Instrum ; 89(1): 014501, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390704

RESUMO

A new pulse-echo interferometry system has been developed for measurements of sound velocity at simultaneous high pressure and temperature corresponding to those of the Earth's lower mantle, using synchrotron X-ray techniques at SPring-8. A combination of a low-noise high-frequency amplifier and a high-speed solid-state relay system allowed us to clearly detect the ultrasonic echoes of a small sample (<1.0 mm in diameter and length) in multi-anvil apparatus. A new high-pressure cell has also been introduced for precise measurement of the length of the tiny sample by X-ray radiography imaging under very high pressure and temperature. The new system was tested by measuring elastic velocities of α-Al2O3 over wide pressure and temperature ranges of up to 27 GPa and 1873 K, respectively. The resultant adiabatic bulk modulus, shear modulus, and pressure and temperature derivatives of α-Al2O3 are K0S = 251.2 (18) GPa, ∂KS/∂P = 4.21 (10), ∂KS/∂T = -0.025 (1), G = 164.1 (7), ∂G/∂P = 1.59 (3), ∂G/∂T = -0.021 (1). These values are consistent with those previously reported based on experiments at high temperatures at ambient pressure and high pressures at room temperature. The present system allows precise measurements of the elastic velocities of minerals under the pressures and temperatures corresponding to the lower mantle for the first time, which should greatly contribute to our understanding of mineralogy of the whole mantle.

9.
Sci Adv ; 1(4): e1500075, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26601182

RESUMO

The presence of seifertite, one of the high-pressure polymorphs of silica, in achondritic shocked meteorites has been problematic because this phase is thermodynamically stable at more than ~100 GPa, unrealistically high-pressure conditions for the shock events in the early solar system. We conducted in situ x-ray diffraction measurements at high pressure and temperatures, and found that it metastably appears down to ~11 GPa owing to the clear difference in kinetics between the metastable seifertite and stable stishovite formations. The temperature-insensitive but time-sensitive kinetics for the formation of seifertite uniquely constrains that the critical shock duration and size of the impactor on differentiated parental bodies are at least ~0.01 s and ~50 to 100 m, respectively, from the presence of seifertite.

10.
Sci Adv ; 1(9): e1500360, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26601281

RESUMO

Understanding the deformation mechanisms of olivine is important for addressing the dynamic processes in Earth's upper mantle. It has been thought that dislocation creep is the dominant mechanism because of extrapolated laboratory data on the plasticity of olivine at pressures below 0.5 GPa. However, we found that dislocation-accommodated grain boundary sliding (DisGBS), rather than dislocation creep, dominates the deformation of olivine under middle and deep upper mantle conditions. We used a deformation-DIA apparatus combined with synchrotron in situ x-ray observations to study the plasticity of olivine aggregates at pressures up to 6.7 GPa (that is, ~200-km depth) and at temperatures between 1273 and 1473 K, which is equivalent to the conditions in the middle region of the upper mantle. The creep strength of olivine deforming by DisGBS is apparently less sensitive to pressure because of the competing pressure-hardening effect of the activation volume and pressure-softening effect of water fugacity. The estimated viscosity of olivine controlled by DisGBS is independent of depth and ranges from 10(19.6) to 10(20.7) Pa·s throughout the asthenospheric upper mantle with a representative water content (50 to 1000 parts per million H/Si), which is consistent with geophysical viscosity profiles. Because DisGBS is a grain size-sensitive creep mechanism, the evolution of the grain size of olivine is an important process controlling the dynamics of the upper mantle.

11.
Rev Sci Instrum ; 83(10): 103908, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126783

RESUMO

We describe a new method for the in situ measurement of the density of a liquid at high pressure and high temperature using the falling-sphere technique. Combining synchrotron radiation X-ray radiography with a large-volume press, the newly developed falling-sphere method enables the determination of the density of a liquid at high pressure and high temperature based on Stokes' flow law. We applied this method to liquid sulfur and successfully obtained the density at pressures up to 9 GPa. Our method could be used for the determination of the densities of other liquid materials at higher static pressures than are currently possible.

12.
Phys Rev Lett ; 102(11): 115901, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19392217

RESUMO

Under compression, the As-S liquids are subject to transformations, including polymerization and metallization. We have measured the viscosity of the As-S liquids under high pressures. As a result, large viscosity variations by 4-5 orders of magnitude have been revealed. The viscosity values of the As-S liquids are moderate in the molecular state, very high in the covalent state, and low in the metallic state. Therefore, predicting the viscosity behavior in other melts under pressure is possible, which is of considerable importance for the physics of glass transition, geophysics, and material science.

13.
Rev Sci Instrum ; 80(2): 023907, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19256662

RESUMO

A temperature of 3500 degrees C was generated using a diamond resistance heater in a large-volume Kawai-type high-pressure apparatus. Re and LaCrO(3) have conventionally been used for heaters in high-pressure studies but they cannot generate temperatures higher than 2900 degrees C and make in situ x-ray observations difficult due to their high x-ray absorption. Using a boron-doped diamond heater overcomes these problems and achieves stable temperature generation for pressure over 10 GPa. The heater starting material is a cold-compressed mixture of graphite with boron used to avoid the manufacturing difficulties due to the extreme hardness of diamond. The diamond heater was synthesized in situ from the boron-graphite mixture at temperature of 1600+/-100 degrees C and pressure of 20 GPa. By using the proposed technique, we have employed the diamond heater for high-temperature generation in a large-volume high-pressure apparatus. Achievement of temperatures above 3000 degrees C allows us to measure the melting points of the important constituents in earth's mantle (MgSiO(3), SiO(2), and Al(2)O(3)) and core (Fe and Ni) at extremely high pressures.

14.
Proc Natl Acad Sci U S A ; 104(22): 9162-7, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17446274

RESUMO

Understanding the thermal-chemical state of the Earth's core requires knowledge of the thermal expansion of iron-rich alloys at megabar pressures and high temperatures. Our survey of literature revealed a significant lack of such data. We have determined the unit-cell parameters of the iron-sulfur compound Fe(3)S by using synchrotron x-ray diffraction techniques and externally heated diamond-anvil cells at pressures up to 42.5 GPa and temperatures up to 900 K. The zero-pressure thermal expansivity of Fe(3)S is determined in the form alpha = a(1) + a(2)T, where a(1) = 3.0 +/- 1.3 x 10(-5) K(-1) and a(2) = 2.8 +/- 1.5 x 10(-8) K(-2). The temperature dependence of isothermal bulk modulus ((partial differential)K(T,0)/(partial differential)T)(P) is estimated at -3.75 +/- 1.80 x 10(-2) GPa K(-1). Our data at 42.5 GPa and 900 K suggest that approximately 2.1 at. % (1.2 wt. %) sulfur produces 1% density deficit in iron. We have also carried out energy-dispersive x-ray diffraction measurements on pure iron and Fe(0.864)Si(0.136) alloy samples that were placed symmetrically in the same multi-anvil cell assemblies, using the SPring-8 synchrotron facility in Japan. Based on direct comparison of unit cell volumes under presumably identical pressures and temperatures, our data suggest that at most 3.2 at. % (1.6 wt. %) silicon is needed to produce 1% density deficit with respect to pure iron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA