RESUMO
Effective treatment options for patients with life-threatening neurological disorders are limited. To address this unmet need, high-impact translational research is essential for the advancement and development of novel therapeutic approaches in neurocritical care. "The Neurotherapeutics Symposium 2019-Neurological Emergencies" conference, held in Rochester, New York, in June 2019, was designed to accelerate translation of neurocritical care research via transdisciplinary team science and diversity enhancement. Diversity excellence in the neuroscience workforce brings innovative and creative perspectives, and team science broadens the scientific approach by incorporating views from multiple stakeholders. Both are essential components needed to address complex scientific questions. Under represented minorities and women were involved in the organization of the conference and accounted for 30-40% of speakers, moderators, and attendees. Participants represented a diverse group of stakeholders committed to translational research. Topics discussed at the conference included acute ischemic and hemorrhagic strokes, neurogenic respiratory dysregulation, seizures and status epilepticus, brain telemetry, neuroprognostication, disorders of consciousness, and multimodal monitoring. In these proceedings, we summarize the topics covered at the conference and suggest the groundwork for future high-yield research in neurologic emergencies.
Assuntos
Emergências , Doenças do Sistema Nervoso , Feminino , Humanos , Doenças do Sistema Nervoso/terapiaRESUMO
BACKGROUND: Tuberculosis, like COVID-19, is most often a pulmonary disease. The COVID-19 pandemic has severely disrupted tuberculosis services in myriad ways: health facility closures, lockdowns, travel bans, overwhelmed healthcare systems, restricted export of antituberculous drugs, etc. The effects of the shared risk on outcomes of the two diseases is not known, particularly for the first year of the pandemic, during the period before COVID-19 vaccines became widely available. OBJECTIVE: We embarked on a systematic review to elucidate the consequences of tuberculosis on COVID-19 outcomes and of COVID-19 on tuberculosis outcomes during the pre-vaccination period of the pandemic. METHODS: The systematic review protocol is registered in PROSPERO. We conducted an initial search of PubMed, Embase, Web of Science, WHO coronavirus database, medRxiv, bioRxiv, preprints.org, and Google Scholar using terms relating to COVID-19 and tuberculosis. We selected cohort and case-control studies for extraction and assessed quality with the Newcastle-Ottawa scale. RESULTS AND CONCLUSION: We identified 2108 unique abstracts published between December 2019 and January 2021. We extracted data from 18 studies from 8 countries. A total of 650,317 persons had a diagnosis of COVID-19, and 4179 had a diagnosis of current or prior tuberculosis. We explored links between tuberculosis and COVID-19 incidence, mortality, and other adverse outcomes. Nine studies reported on mortality and 13 on other adverse outcomes; results on the association between tuberculosis and COVID-19 mortality/adverse outcomes were heterogenous. Tuberculosis outcomes were not fully available in any studies, due to short follow-up (maximum of 3 months after COVID-19 diagnosis), so the effects of COVID-19 on tuberculosis outcomes could not be assessed. Much of the rapid influx of literature on tuberculosis and COVID-19 during this period was published on preprint servers, and therefore not peer-reviewed. It offered limited examination of the effect of tuberculosis on COVID-19 outcomes and even less on the effect of COVID-19 on tuberculosis treatment outcomes.
RESUMO
Medical education has drastically transformed during the COVID-19 pandemic. Measures such as adopting telemedicine visits, minimizing the number of trainees on service, discontinuing external rotations, and converting in-person to online didactics have been broadly and swiftly implemented. While these innovations have promoted greater interconnectivity amongst institutions and made continuing medical education possible, international exchange programs in medical education are still largely disrupted. In response to the changing guidelines and restrictions necessitated by the COVID-19 pandemic, the authors used Kern's six-step approach to design and implement a virtual curriculum to replace the in-person activities of the 2020-2021 Neurology Peru-Rochester exchange program (NeuroPro). Twenty-seven trainees participated in this virtual adaptation. The average daily attendance was ≥85% and the program was rated 9/10 on average in a feedback survey (63% response rate). The median percentage of correct answers during the pre-test was 64% and it increased to 79% during the post-test (P = 0.003). Virtual adaptation of international exchange programs in medical education is feasible to safely continue international collaborative efforts to promote symbiotic building of local expertise and cross-cultural exchange during the ongoing COVID-19 pandemic and beyond.
Assuntos
COVID-19 , Neurologia , COVID-19/epidemiologia , Currículo , Educação Médica Continuada , Humanos , Neurologia/educação , PandemiasRESUMO
A quantifiable, stool-based, Mycobacterium tuberculosis (Mtb) test has potential complementary value to respiratory specimens. Limit of detection (LOD) was determined by spiking control stool. Clinical test performance was evaluated in a cohort with pulmonary tuberculosis (TB) (N = 166) and asymptomatic household TB child contacts (N = 105). Stool-quantitative polymerase chain reaction (qPCR) results were compared with sputum acid-fast bacilli (AFB) microscopy, GeneXpert MTB/RIF (Xpert MTB/RIF), and cultures. In Mtb stool-spiking studies, the LOD was 96 colony-forming units/50 mg of stool (95% confidence interval [CI]: 84.8-105.6). Among specimens collected within 72 hours of antituberculosis treatment (ATT) initiation, stool qPCR detected 22 of 23 (95%) of culture-positive cases. Among clinically diagnosed cases that were Xpert MTB/RIF and culture negative, stool qPCR detected an additional 8% (3/37). Among asymptomatic, recently TB-exposed participants, stool PCR detected Mtb in two of 105 (1.9%) patients. Two months after ATT, the Mtb quantitative burden in femtogram per microliters decreased (Wilcoxon signed-rank P < 0.001) and persistent positive stool PCR was associated with treatment failure or drug resistance (relative risk 2.8, CI: 1.2-6.5; P = 0.012). Stool-based qPCR is a promising complementary technique to sputum-based diagnosis. It detects and quantifies low levels of stool Mtb DNA, thereby supporting adjunct diagnosis and treatment monitoring in pulmonary TB.