Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 289(13): 8916-30, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24526689

RESUMO

Post-translational modifications of histone proteins produce dynamic signals that regulate the structure and function of chromatin. Mono-ubiquitination of H2B in the histone tail (at Lys-123 in yeast or Lys-120 in humans) is a conserved modification that has been implicated in the regulation of transcription, replication, and DNA repair processes. In a search for direct effectors of ubH2B, we identified a deubiquitinating enzyme, Usp15, through affinity purification with a nonhydrolyzable ubH2B mimic. In the nucleus, Usp15 indirectly associates with the ubH2B E3 ligase, RNF20/RNF40, and directly associates with a component of the splicing machinery, SART3 (also known as TIP110 or p110). These physical interactions place Usp15 in the vicinity of actively transcribed DNA. Importantly we found that SART3 has previously unrecognized histone chaperone activities. SART3, but not the well-characterized histone chaperone Nap1, enhances Usp15 binding to ubH2B and facilitates deubiquitination of ubH2B in free histones but not in nucleosomes. These results suggest that SART3 recruits ubH2B, which may be evicted from DNA during transcription, for deubiquitination by Usp15. In light of the function played by SART3 in U4/U6 di-snRNP formation, our discovery points to a direct link between eviction-coupled erasure of the ubiquitin mark from ubH2B and co-transcriptional pre-mRNA splicing.


Assuntos
Antígenos de Neoplasias/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação , Animais , Linhagem Celular , Humanos , Nucleossomos/genética , Nucleossomos/metabolismo , Splicing de RNA , Especificidade por Substrato , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo
2.
Methods ; 70(2-3): 134-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25063569

RESUMO

Histone proteins undergo various types of post-translational modifications (PTMs) to regulate dynamic processes in the cell, including replication, transcription and DNA damage repair. One type of histone PTM is the attachment of a small protein, ubiquitin (Ub). In eukaryotic organisms, a single Ub is attached to specific lysine residues of histones H2A and H2B in a modification that, unlike many other forms of ubiquitination in the cell, does not signal degradation. Instead, both attachment and removal of Ub to these histones has been shown to affect gene transcription, pre-mRNA splicing, and DNA damage repair, but the mechanisms by which histone ubiquitination governs these processes are not well understood. In an effort to identify "readers" of Ub-histones, we developed a straightforward crosslinking strategy to generate nonhydrolyzable Ub-histone mimics. These mimics were assembled into Ub-histone-containing dimers or nucleosomes. We demonstrate that they can be used in pulldown assays to identify proteins that differentiate unmodified and ubiquitinated histones.


Assuntos
Histonas/química , Engenharia de Proteínas/métodos , Ubiquitina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 106(34): 14303-8, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19667197

RESUMO

The Sec1/Munc18 (SM) protein family regulates intracellular trafficking through interactions with individual SNARE proteins and assembled SNARE complexes. Revealing a common mechanism of this regulation has been challenging, largely because of the multiple modes of interaction observed between SM proteins and their cognate syntaxin-type SNAREs. These modes include binding of the SM to a closed conformation of syntaxin, binding to the N-terminal peptide of syntaxin, binding to assembled SNARE complexes, and/or binding to nonsyntaxin SNAREs. The SM protein Vps45p, which regulates endosomal trafficking in yeast, binds the conserved N-terminal peptide of the syntaxin Tlg2p. We used size exclusion chromatography and a quantitative fluorescent gel mobility shift assay to reveal an additional binding site that does not require the Tlg2p N-peptide. Characterization of Tlg2p mutants and truncations indicate that this binding site corresponds to a closed conformation of Tlg2p. Furthermore, the Tlg2p N-peptide competes with the closed conformation for binding, suggesting a fundamental regulatory mechanism for SM-syntaxin interactions in SNARE assembly and membrane fusion.


Assuntos
Proteínas Qa-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Ligação Competitiva , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Immunoblotting , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
4.
Nat Struct Mol Biol ; 13(6): 555-6, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16699513

RESUMO

The exocyst is a conserved protein complex essential for trafficking secretory vesicles to the plasma membrane. The structure of the C-terminal domain of the exocyst subunit Sec6p reveals multiple helical bundles, which are structurally and topologically similar to Exo70p and the C-terminal domains of Exo84p and Sec15, despite <10% sequence identity. The helical bundles appear to be evolutionarily related molecular scaffolds that have diverged to create functionally distinct exocyst proteins.


Assuntos
Proteínas de Drosophila/química , Proteínas de Transporte Vesicular/química , Animais , Modelos Moleculares , Conformação Proteica
5.
PLoS One ; 4(2): e4443, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19214222

RESUMO

BACKGROUND: The exocyst is a large hetero-octomeric protein complex required for regulating the targeting and fusion of secretory vesicles to the plasma membrane in eukaryotic cells. Although the sequence identity between the eight different exocyst subunits is less than 10%, structures of domains of four of the subunits revealed a similar helical bundle topology. Characterization of several of these subunits has been hindered by lack of soluble protein for biochemical and structural studies. METHODOLOGY/PRINCIPAL FINDINGS: Using advanced hidden Markov models combined with secondary structure predictions, we detect significant sequence similarity between each of the exocyst subunits, indicating that they all contain helical bundle structures. We corroborate these remote homology predictions by identifying and purifying a predicted domain of yeast Sec10p, a previously insoluble exocyst subunit. This domain is soluble and folded with approximately 60% alpha-helicity, in agreement with our predictions, and capable of interacting with several known Sec10p binding partners. CONCLUSIONS/SIGNIFICANCE: Although all eight of the exocyst subunits had been suggested to be composed of similar helical bundles, this has now been validated by our hidden Markov model structure predictions. In addition, these predictions identified protein domains within the exocyst subunits, resulting in creation and characterization of a soluble, folded domain of Sec10p.


Assuntos
Complexos Multiproteicos/química , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Algoritmos , Animais , Cadeias de Markov , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
J Cell Sci ; 122(Pt 13): 2292-9, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19509055

RESUMO

Membrane fusion in all eukaryotic cells is regulated by the formation of specific SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes. The molecular mechanisms that control this process are conserved through evolution and require several protein families, including Sec1p/Munc18 (SM) proteins. Here, we demonstrate that the mammalian SNARE protein syntaxin 16 (Sx16, also known as Syn16) is a functional homologue of the yeast SNARE Tlg2p, in that its expression fully complements the mutant phenotypes of tlg2Delta mutant yeast. We have used this functional homology to demonstrate that, as observed for Tlg2p, the function of Sx16 is regulated by the SM protein Vps45p. Furthermore, in vitro SNARE-complex assembly studies demonstrate that the N-terminal domain of Tlg2p is inhibitory to the formation of SNARE complexes, and that this inhibition can be lifted by the addition of purified Vps45p. By combining these cell-biological and biochemical analyses, we propose an evolutionarily conserved regulatory mechanism for Vps45p function. Our data support a model in which the SM protein is required to facilitate a switch of Tlg2p and Sx16 from a closed to an open conformation, thus allowing SNARE-complex assembly and membrane fusion to proceed.


Assuntos
Fusão de Membrana/fisiologia , Proteínas Qa-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sintaxina 16/metabolismo , Animais , Teste de Complementação Genética , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/genética , Receptores de Fator de Acasalamento/genética , Receptores de Fator de Acasalamento/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sintaxina 16/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
Biochemistry ; 47(7): 2162-71, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18220422

RESUMO

PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a tumor suppressor that is mutated or deleted in a variety of human tumors, and even loss of only one PTEN gene profoundly affects carcinogenesis. PTEN encodes a phosphatidylinositol phosphate phosphatase specific for the 3-position of the inositol ring. Despite its importance, we are just beginning to understand the regulatory circuits that maintain the correct levels of PTEN phosphatase activity. Several independent studies reported that PI(4,5)P2 enhances PTEN phosphatase activity, but the reasons for this enhancement are currently being debated. In this study, PTEN bound to PI(4,5)P2-bearing vesicles has increased alpha-helicity, providing direct spectroscopic proof of a conformational change. Neither PI(3,5)P2 nor PI(3,4,5)P3 induced this conformational change. On the basis of experiments with two mutant PTEN proteins, it is shown that PI(4,5)P2 induces this conformational change by binding to the PTEN N-terminal domain. Using PTEN protein and a 21-amino acid peptide based on the PTEN N-terminus, we tested all natural phosphatidylinositol phosphates and found preferential binding of PI(4,5)P2. PTEN also binds to phosphatidylserine-bearing vesicles, resulting in a slight increase in beta-sheet content. In addition, PTEN binds synergistically to PI(4,5)P2 and phosphatidylserine, and hence, these anionic lipids do not compete for PTEN binding sites. Collectively, these results demonstrate that PTEN binds to membranes through multiple sites, but only PI(4,5)P2 binding to the N-terminal domain triggers a conformational change with increased alpha-helicity.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositóis/metabolismo , DNA Complementar , Humanos , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Infravermelho , Triptofano/metabolismo
8.
Biochemistry ; 44(16): 6302-11, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15835919

RESUMO

Vesicles in eukaryotic cells transport cargo between functionally distinct membrane-bound organelles and the plasma membrane for growth and secretion. Trafficking and fusion of vesicles to specific target sites are highly regulated processes that are not well understood at the molecular level. At the plasma membrane, tethering and fusion of secretory vesicles require the exocyst complex. As a step toward elucidation of the molecular architecture and biochemical function(s) of the exocyst complex, we expressed and purified the exocyst subunit Sec6p and demonstrated that it is a predominantly helical protein. Biophysical characterization of purified Sec6p by gel filtration and analytical ultracentrifugation experiments revealed that Sec6p is a dimer. Limited proteolysis defined an independently folded C-terminal domain (residues 300-805) that equilibrated between a dimer and monomer in solution. Removal of residues 300-410 from this construct yielded a well-folded, monomeric domain. These results demonstrate that residues 300-410 are necessary for dimerization, and the presence of the N-terminal region (1-299) increases dimer stability. Moreover, we found that the dimer of Sec6p binds to the plasma membrane t-SNARE Sec9p and inhibits the interaction between Sec9p and its partner t-SNARE Sso1p. This direct interaction between the exocyst complex and the t-SNARE implicates the exocyst in SNARE complex regulation.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte/genética , Dicroísmo Circular , Dimerização , Proteínas de Membrana/genética , Complexos Multiproteicos , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Qc-SNARE , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA