Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 602(3): 461-484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165254

RESUMO

Acute cardiovascular physical exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Here, using positron emission tomography (PET) with [11 C]raclopride, in a multi-experiment study we investigated whether acute exercise releases endogenous dopamine (DA) in the brain. We hypothesized that acute exercise augments the brain DA system, and that RT improvement is correlated with this endogenous DA release. The PET study (Experiment 1: n = 16) demonstrated that acute physical exercise released endogenous DA, and that endogenous DA release was correlated with improvements in RT of the Go/No-Go task. Thereafter, using two electrical muscle stimulation (EMS) studies (Experiments 2 and 3: n = 18 and 22 respectively), we investigated what triggers RT improvement. The EMS studies indicated that EMS with moderate arm cranking improved RT, but RT was not improved following EMS alone or EMS combined with no load arm cranking. The novel mechanistic findings from these experiments are: (1) endogenous DA appears to be an important neuromodulator for RT improvement and (2) RT is only altered when exercise is associated with central signals from higher brain centres. Our findings explain how humans rapidly alter their behaviour using neuromodulatory systems and have significant implications for promotion of cognitive health. KEY POINTS: Acute cardiovascular exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Using the neurochemical specificity of [11 C]raclopride positron emission tomography, we demonstrated that acute supine cycling released endogenous dopamine (DA), and that this release was correlated with improved RT. Additional electrical muscle stimulation studies demonstrated that peripherally driven muscle contractions (i.e. exercise) were insufficient to improve RT. The current study suggests that endogenous DA is an important neuromodulator for RT improvement, and that RT is only altered when exercise is associated with central signals from higher brain centres.


Assuntos
Dopamina , Tomografia por Emissão de Pósitrons , Humanos , Racloprida , Tempo de Reação , Tomografia por Emissão de Pósitrons/métodos , Exercício Físico , Neurotransmissores
2.
J Neurol Sci ; 457: 122892, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266518

RESUMO

BACKGROUND AND AIM: The differentiation of isolated cortical venous thrombosis (ICVT) from cerebral amyloid angiopathy (CAA) can be difficult because both diseases share similar neurological symptoms and imaging findings. N-methyl-11C-2-(4'-methylaminophenyl)-6-hydroxybenzo-thiazole (11C-PiB) positron emission tomography (PET) functions as a diagnostic modality for CAA by detecting amyloid deposition. The present prospective study evaluated amyloid deposition using 11C-PiB-PET in consecutive patients with suspected ICVT. METHOD: This study was a prospective observational study. Patients who attended or were hospitalized between May 2019 and March 2020 were included in the analysis. Consecutive patients who met the criteria for suspicion of ICVT were enrolled in the study, and the clinical course, symptoms, imaging findings (including magnetic resonance imaging), and the 11C-PiB-PET findings of each case were analyzed. RESULTS: The study cohort included four patients (64-82 years of age, all women). In one younger patient, 11C-PiB-PET afforded no findings suggestive of CAA, whereas the remaining three patients exhibited 11C-PiB-PET findings suggestive of CAA. CONCLUSION: Although 11C-PiB-PET would be a reasonable modality for distinguishing ICVT from CAA, especially in younger patients, it might be difficult to differentiate ICVT from CAA in elderly patients because of the potential deposition of amyloid. CLINICAL TRIAL REGISTRATION: URL: https://www.umin.ac.jp/ctr/ Unique identifier: UMIN 000037101.


Assuntos
Angiopatia Amiloide Cerebral , Humanos , Feminino , Idoso , Estudos Prospectivos , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/patologia , Amiloide , Tomografia por Emissão de Pósitrons/métodos , Tiazóis , Imageamento por Ressonância Magnética , Hemorragia Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA