Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Anal Chem ; 93(17): 6589-6593, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891393

RESUMO

Proton-transfer-reaction (PTR) mass spectrometry (MS) is capable of detecting trace-level volatile organic compounds (VOCs) in gaseous samples in real time. Therefore, PTR-MS has become a popular method in many different study areas. Most of the currently reported PTR-MS applications are designed to determine volatile compounds. However, the method might be applicable for nonvolatile organic compound detection. Supercritical fluid chromatography (SFC) has been studied in the last 5 decades. This approach has high separation efficiency and predictable retention behavior, making separation optimization easy. Atmospheric ionization techniques, such as atmospheric chemical ionization (APCI) and electrospray ionization (ESI), are the most studied SFC-MS interfaces. These processes require the addition of makeup solvents to prevent precipitation or crystallization of the solute while depressurizing the mobile phase. In contrast, the PTR process is carried out in a vacuum; supercritical carbon dioxide may release solute into the PTR flow tube without a phase transition as long as it is maintained above a critical temperature. Therefore, this might constitute yet another use for the SFC-MS interface. Caffeine and a few other nonpolar compounds in supercritical carbon dioxide were successfully detected with time-of-flight MS without adding solvent by using preliminarily assembled supercritical flow injection and supercritical fluid extraction (SFE)-PTR interfaces.


Assuntos
Cromatografia com Fluido Supercrítico , Prótons , Dióxido de Carbono , Espectrometria de Massas , Solventes
2.
Environ Sci Technol ; 49(8): 4861-7, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25835033

RESUMO

The influence of oceanic biological activity on sea spray aerosol composition, clouds, and climate remains poorly understood. The emission of organic material and gaseous dimethyl sulfide (DMS) from the ocean represents well-documented biogenic processes that influence particle chemistry in marine environments. However, the direct emission of particle-phase biogenic sulfur from the ocean remains largely unexplored. Here we present measurements of ocean-derived particles containing reduced sulfur, detected as elemental sulfur ions (e.g., (32)S(+), (64)S2(+)), in seven different marine environments using real-time, single particle mass spectrometry; these particles have not been detected outside of the marine environment. These reduced sulfur compounds were associated with primary marine particle types and wind speeds typically between 5 and 10 m/s suggesting that these particles themselves are a primary emission. In studies with measurements of seawater properties, chlorophyll-a and atmospheric DMS concentrations were typically elevated in these same locations suggesting a biogenic source for these sulfur-containing particles. Interestingly, these sulfur-containing particles only appeared at night, likely due to rapid photochemical destruction during the daytime, and comprised up to ∼67% of the aerosol number fraction, particularly in the supermicrometer size range. These sulfur-containing particles were detected along the California coast, across the Pacific Ocean, and in the southern Indian Ocean suggesting that these particles represent a globally significant biogenic contribution to the marine aerosol burden.


Assuntos
Aerossóis/análise , Atmosfera/química , Compostos de Enxofre/análise , Ritmo Circadiano , Oceano Índico , Espectrometria de Massas , Oceano Pacífico , Estações do Ano
3.
Talanta ; 260: 124616, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146457

RESUMO

For applying highly sensitive mass spectrometry to chemical analysis of aqueous samples, we have developed a novel technique using a new form of liquid droplets, which we call "aeromicelle" (AM), to deliver aqueous sample solutions directly into the vacuum region of a single-particle mass spectrometer in liquid form and conduct immediate mass analysis. AMs are generated by spraying an aqueous solution containing a surfactant at a concentration significantly lower than its critical micelle concentration (CMC). When the solution is sprayed, liquid droplets containing the surfactant are formed, which gradually dry in an air flow. Upon drying, the surfactant concentration in the droplet exceeds its CMC, and consequently, the surfactant molecules begin to cover the droplet surface. Finally, the surface is expected to be fully covered with surfactant molecules such as reverse micelles. The surface coverage helps suppress the evaporation of water, thereby enhancing the residence time of the liquid droplet. Our experimental results show that the AMs retained a liquid form for at least 100 s in air and survived even under vacuum conditions for further mass analysis: each AM delivered in the vacuum region of a single-particle mass spectrometer is ablated with an intense laser pulse and then, mass analyzed. Individual AMs generated from an aqueous solution containing CsCl were analyzed using a single-particle mass spectrometer. The Cs+ ion peak was observed even in AMs generated from the 10 nM solution. The number of Cs atoms in each AM was estimated to be approximately 7 × 103, which corresponds to 1.2 × 10-20 mol (12 zmol). Meanwhile, in the mass analysis of tyrosine, both positive and negative fragmentation ions from tyrosine in AMs were observed in the mass spectrum and 4.6 × 105 (760 zmol) tyrosine molecules were detected.

4.
Environ Pollut ; 318: 120846, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496065

RESUMO

Organic aerosols (OA) are major components of fine particulate matter, yet their formation mechanism remains unclear, especially in polluted environments. In this study, we investigated the diurnal chemical compositions and formation processes of OA in carbonaceous particles during winter in Beijing using aerosol time-of-flight mass spectrometry. We found that 84.5% of the measured carbonaceous particles underwent aging processes, characterized by larger diameter and more secondary species compared to fresh carbonaceous particles, and presented different chemical compositions of OA in the daytime and nighttime. During the day, under high O3 concentrations, organosulfates and oligomers existed in the aged carbonaceous particles, which were mixed with a higher signal of nitrate compared with sulfate. At night, under high relative humidity, distinct spectral signatures of hydroxymethanesulfonate and organic nitrogen compounds, and minor signals of other hydroxyalkylsulfonates and high molecular weight organic compounds were present in the aged carbonaceous particles, which were mixed with a higher signal of sulfate compared with nitrate. Our results indicated that photochemistry contributed to OA formation in the daytime, while aqueous chemistry played an important role in OA formation in the nighttime. The findings can help improve the performance of air quality and climate models on OA simulation.


Assuntos
Poluentes Atmosféricos , Pequim , Poluentes Atmosféricos/análise , Nitratos/análise , Monitoramento Ambiental , Material Particulado/análise , Compostos Orgânicos/análise , Estações do Ano , Aerossóis/análise , Sulfatos/análise , China
5.
J Chromatogr A ; 1682: 463495, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36126560

RESUMO

The application of proton transfer ionization reaction mass spectrometry (PTR MS) combined with microscale supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) aiming to quantitate single-cell fatty acid analysis levels was investigated. Using a microscale extraction vessel, the obtained low limits of quantitation (LLOQs) of arachidonic acid and arachidic acid were 1.2 and 2.7 fmol, respectively, by using less than 1 µL of sample on stainless steel frit. A series of phthalate, vitamin K1, and α-tocopherol were also tested, and the LLOQ was less than one femtomole for phthalate and 35 and 13 fmol for vitamin K1 and α-tocopherol, respectively. A microliter portion of SFE extracts was introduced into the SFC column by split injection, improving the reproducibility of the chromatography and separation efficiency. The method in the present study has great potential to quantitate lipophilic molecules on the nanogram scale of a sample without complex preparation procedures.


Assuntos
Cromatografia com Fluido Supercrítico , Ácido Araquidônico , Cromatografia com Fluido Supercrítico/métodos , Espectrometria de Massas , Ácidos Ftálicos , Extratos Vegetais/química , Prótons , Reprodutibilidade dos Testes , Aço Inoxidável , Vitamina K , alfa-Tocoferol
6.
Mass Spectrom (Tokyo) ; 11(1): A0108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713809

RESUMO

We have developed a rapid and sensitive analytical method for α-tocopherol and its oxidative products by combining online hyphenation of supercritical fluid extraction-supercritical fluid chromatography (SFC) with proton transfer reaction (PTR) ionization mass spectrometry (MS). α-Tocopherol is a well-known antioxidant that plays a vital role in the antioxidant defense system in plant cells. However, studies on the cellular mechanisms of α-tocopherol have been limited owing to the lack of a rapid analytical method, which limits the comparison of plant cells incubated in various conditions. Additionally, complex sample preparation and long chromatography separation times are required. Moreover, the majority of the involved molecules are a combination of isomers, which must be separated before applying tandem MS. α-Tocopherol produces the α-tocopheroxyl radical in the first step of its antioxidant function; another ion with the same mass may also be generated from the source. SFC separation effectively distinguished the observed ions from their oxidative products in the sample and those produced during the ionization reaction process. This method enabled the measurement of α-tocopherol and its oxidative products such as α-tocopheroxyl radical and α-tocopheryl quinone in approximately 3 min per sample, including the time required for sample preparation.

7.
Mass Spectrom (Tokyo) ; 11(1): A0112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713805

RESUMO

Proton-transfer-reaction (PTR) mass spectrometry (MS), a widely used method for detecting trace-levels of volatile organic compounds in gaseous samples, can also be used for the analysis of small non-volatile molecules by using supercritical fluid as a transporter for the molecules. Supercritical fluid extraction (SFE) is a method that permits lipophilic compounds to be rapidly and selectively extracted from complex matrices. The combination of the high sensitivity of PTR MS with the SFE is a potentially novel method for analyzing small molecules in a single cell, particularly for the analysis of lipophilic compounds. We preliminarily evaluated this method for analyzing the components of a single HeLa cell that is fixed on a stainless steel frit and is then directly introduces the SFE extracts into the PTR MS. A total of 200/91 ions were observed in positive/negative ion mode time-of-flight mass spectra, and the masses of 11/10 ions could be matched to chemical formulae obtained from the LipidMaps lipids structure database. Using various authentic lipophilic samples, the method could be used to detect free fatty acids in the sub-femtomole to femtomole order in the negative ion mode, the femtomole to sub-picomole order for fat-soluble vitamins, and the picomole order for poly aromatic hydrocarbons in both the positive and negative ion mode.

8.
Anal Chem ; 81(5): 1792-800, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19175329

RESUMO

Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

9.
Sci Total Environ ; 376(1-3): 185-97, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17306859

RESUMO

The presence of iodine chemistry, hypothesized due to the overprediction of HO(2) levels by a photochemical box model at Rishiri Island in June 2000, was quantitatively tested against the observed NO/NO(2) ratios and the net production rates of ozone. The observed NO/NO(2) ratios were reproduced reasonably well by considering the conversion of NO to NO(2) by IO, whose amount was calculated so as to reproduce the observed HO(2) levels. However, the net production rates of ozone were calculated to be negative when such high mixing ratios of IO were considered, which was inconsistent with the observed buildup of ozone during daytime. These results suggest that iodine chemistry may not be the sole mechanism for the reduced mixing ratios of HO(2), or that "hot spots" for iodine chemistry were present. Diurnal variations in the mixing ratios of HCHO, CH(3)CHO, peroxy acetyl nitrate (PAN) and HNO(3) observed during the study are presented along with the simulated ones. The box model simulations suggest that the effect of iodine chemistry on these concentrations is small and that important sources of CH(3)CHO and sinks of PAN are probably missing from our current understanding of the tropospheric chemistry mechanism.


Assuntos
Poluentes Atmosféricos/análise , Iodo/química , Modelos Químicos , Poluentes Atmosféricos/química , Aldeídos/análise , Aldeídos/química , Monitoramento Ambiental , Geografia , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Japão , Ácido Nítrico/análise , Ácido Nítrico/química , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Oxidantes/análise , Oxidantes/química , Oxidantes Fotoquímicos/análise , Oxidantes Fotoquímicos/química , Ozônio/análise , Ozônio/química , Ácido Peracético/análogos & derivados , Ácido Peracético/análise , Ácido Peracético/química , Peróxidos/análise , Peróxidos/química , Fatores de Tempo
10.
Environ Sci Technol ; 43(10): 3500-6, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19544846

RESUMO

Oceangoing ships emit an estimated 1.2-1.6 million metric tons (Tg) of PM10 per year and represent a significant source of air pollution to coastal communities. As shown herein, ship and other emissions near the Los Angeles and Long Beach Port region strongly influence air pollution levels in the San Diego area. During time periods with regional transport, atmospheric aerosol measurements in La Jolla, California show an increase in 0.5-1 microm sized single particles with unique signatures including soot, metals (i.e., vanadium, iron, and nickel), sulfate, and nitrate. These particles are attributed to primary emissions from residual oil sourcessuch as ships and refineries, as well as traffic in the port region, and secondary processing during transport. During regional transport events, particulate matter concentrations were 2-4 times higher than typical average concentrations from local sources, indicating the health, environmental, and climate impacts from these emission sources must be taken into consideration in the San Diego region. Unless significant regulations are imposed on shipping-related activities, these emission sources will become even more important to California air quality as cars and truck emissions undergo further regulations and residual oil sources such as shipping continue to expand.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ar/análise , Ar/normas , Navios , Meios de Transporte , Emissões de Veículos/análise , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , California , Los Angeles , Espectrometria de Massas , Tamanho da Partícula , Material Particulado , Sulfatos/química , Fatores de Tempo
11.
Anal Chem ; 76(3): 712-9, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14750867

RESUMO

This paper describes the development and characterization studies of a more efficient aerosol time-of-flight mass spectrometer (ATOFMS), showing results for the on-line detection and determination of the size and chemical composition of single fine (100-300 nm) and ultrafine (<100 nm) particles. An aerodynamic lens inlet was implemented, replacing the converging nozzle inlet used on conventional ATOFMS instruments. In addition, the light scattering region was modified to enhance the scattering signals for smaller particles. Polystyrene latex spheres (PSL) with aerodynamic diameters ranging from 95 to 290 nm were used to characterize the particle sizing efficiency (product of particle transmission efficiency and particle scattering efficiency), particle detection efficiency (product of particle sizing efficiency and particle hit rate), and particle beam profile and perform instrument calibration. At number concentrations of <20 particles/cm(3), the particle sizing efficiencies were determined to be approximately 0.5% for 95 nm and approximately 47% for 290-nm PSL particles, while the particle detection efficiencies were measured to be approximately 0.3% for 95 nm and 44% for 290-nm PSL particles. This represents a significant increase (i.e., at least 3 orders of magnitude) in detection efficiencies for smaller particles over the conventional ATOFMS. In addition, the beam profiles for PSL particles of various sizes were measured in the ion source of the mass spectrometer and follow a Gaussian distribution with a full width at half-maximum of approximately 0.35 mm. The resulting higher detection efficiencies allow ATOFMS to obtain higher temporal resolution measurements of the composition of fine and ultrafine individual particles as demonstrated in initial ambient measurements in La Jolla, CA. At typical ambient particle number concentrations of 10(2)-10(3) particles/cm(3), approximately 30 000 particles with aerodynamic diameters of <300 nm were detected with average 24-h hit rates of 30% for particles between 50 and 300 nm. This advancement, allowing for high temporal resolution measurements of the composition of smaller particles with higher efficiency, adds to a growing number of instruments that can chemically characterize individual fine and ultrafine particles, with the goal of providing new insights into a number of areas including environmental and material sciences, health effects studies, industrial hygiene, and national security.

12.
Anal Chem ; 76(22): 6734-42, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15538798

RESUMO

When used in small molar ratios of matrix to analyte, derivatized fullerenes and single wall nanotubes are shown to be efficient matrices for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The mixing of an acidic functionalized fullerene with a solution of bioanalyte, depositing a dried droplet, and irradiating with a pulsed nitrogen laser yields protonated or cationized molecular ions. Derivatized fullerenes could offer several advantages over conventional MALDI matrices: a high analyte ionization efficiency, a small molar ratios (less than 1) of matrix/analyte, and a broader optical absorption spectrum, which should obviate specific wavelength lasers for MALDI acquisitions. The major disadvantage to the use of fullerenes is the isobaric interference between matrix and analyte ions; however, it is overcome by using MALDI-ion mobility time-of-flight (IM-oTOF) mass spectrometry to preseparate carbon cluster ions from bioanalyte ions prior to TOF mass analysis. However, an alternative to the dried droplet preparation of fullerene MALDI samples is the aerosolization of matrix-analyte solutions (or slurries) followed by impacting the aerosol onto a stainless surface. We also demonstrate that the fullerene matrices can be used to acquire spectra from rat brain tissue.


Assuntos
Carbono/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Dados de Sequência Molecular , Peso Molecular , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA