Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 83(3): 501-14, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26095877

RESUMO

The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin-related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol-enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye-labelled plasma membrane, providing evidence that DRP1E localizes non-uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol-enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation.


Assuntos
Aclimatação/fisiologia , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Proteínas e Peptídeos de Choque Frio/fisiologia , Proteínas de Arabidopsis , GTP Fosfo-Hidrolases , Esfingolipídeos
2.
Plant Cell Physiol ; 50(2): 341-59, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19106119

RESUMO

Microdomains in the plasma membrane (PM) have been proposed to be involved in many important cellular events in plant cells. To understand the role of PM microdomains in plant cold acclimation, we isolated the microdomains as detergent-resistant plasma membrane fractions (DRMs) from Arabidopsis seedlings and compared lipid and protein compositions before and after cold acclimation. The DRM was enriched in sterols and glucocerebrosides, and the proportion of free sterols in the DRM increased after cold acclimation. The protein-to-lipid ratio in the DRM was greater than that in the total PM fraction. The protein amount recovered in DRMs decreased gradually during cold acclimation. Cold acclimation further resulted in quantitative changes in DRM protein profiles. Subsequent mass spectrometry and Western blot analyses revealed that P-type H(+)-ATPases, aquaporins and endocytosis-related proteins increased and, conversely, tubulins, actins and V-type H(+)-ATPase subunits decreased in DRMs during cold acclimation. Functional categorization of cold-responsive proteins in DRMs suggests that plant PM microdomains function as platforms of membrane transport, membrane trafficking and cytoskeleton interaction. These comprehensive changes in microdomains may be associated with cold acclimation of Arabidopsis.


Assuntos
Aclimatação , Arabidopsis/química , Temperatura Baixa , Detergentes/farmacologia , Microdomínios da Membrana/química , Proteínas de Arabidopsis/análise , Lipídeos/análise , Proteínas de Membrana/análise , Proteômica/métodos
3.
Plant Signal Behav ; 5(9): 1115-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20818179

RESUMO

Plants increase their freezing tolerance upon exposure to low, non-freezing temperatures, which is known as cold acclimation. Cold acclimation results in a decrease in the proportion of sphingolipids in the plasma membrane in many plants including Arabidopsis thaliana. The decrease in sphingolipids has been considered to contribute to the increase in the cryostability of the plasma membrane through regulating membrane fluidity. Recently we have proposed a possibility of another important sphingolipid function associated with cold acclimation. In animal cells, it has been known that the plasma membrane contains microdomains due to the chanracteristics of sphingolipids and sterols, and the sphingolipid- and sterol-enriched microdomains are thought to function as platforms for cell signaling, membrane trafficking and pathogen response. In our research on characterization of microdomain-associated lipids and proteins in Arabidopsis, cold-acclimation-induced decrease in sphingolipids resulted in a decrease of microdomains in the plasma membrane and there were considerable changes in membrane transport-, cytoskeleton- and endocytosis-related proteins in the microdomains during cold acclimation. Based on these results, we discuss a functional relationship between the changes in microdomain components and plant cold acclimation.


Assuntos
Aclimatação/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Microdomínios da Membrana/metabolismo , Esfingolipídeos/metabolismo , Estresse Fisiológico , Arabidopsis/metabolismo , Temperatura Baixa , Citoesqueleto/metabolismo , Detergentes , Endocitose/fisiologia , Congelamento , Fluidez de Membrana/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA