Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Org Biomol Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39257242

RESUMO

(2Z)-Lachnophyllum methyl ester and (4Z)-Lachnophyllum lactone were recently identified as major components in essential oils and extracts of Conyza bonariensis from Togo. Extended biological evaluation of these acetylenic compounds was however hampered by the reduced amounts isolated. A synthetic route was designed providing access to larger quantities of these two natural products as well as to original non-natural analogs with the prospect of exploring for the first time the structure-activity relationships in this series. Using LC/MS analysis, synthetic samples allowed confirming the presence of the two previously isolated natural products in plant extracts obtained by the accelerated solvent extraction technique. The nematocidal activity of the synthesized compounds confirmed the potency of the natural products, which remain the most active among all analogs tested. The synthesized compounds were also assessed against Leishmania infantum axenic amastigotes and the Mycobacterium tuberculosis H37Rv pathogenic strain. (2Z)-Lachnophyllum methyl ester, (4Z)-Lachnophyllum lactone and lactone analogs exhibited the strongest antileishmanial potency. As expected, a longer alkyl chain was necessary to observe significant antimycobacterial activity. The lactone analog bearing a C10 lipophilic appendage displayed the highest antimycobacterial potency. The notable activities of lactones, naturally occurring or analogs, either nematicidal, antileishmanial or antimycobacterial, were compared to their cytotoxicity for mammalian cells and revealed moderate selectivity index values. In this regard, the innocuous (2Z)-Lachnophyllum methyl ester and its analogs open up more promising perspectives for the discovery of bioactive agents to protect both agricultural crops and human health.

2.
J Nat Prod ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303021

RESUMO

The present review article recapitulates for the first time the antipathogenic biological data of a series of lipidic natural products and synthetic analogues thereof characterized by the presence in their structure of an alkynylcarbinol unit. The cytotoxic properties of such natural and bioinspired compounds have been covered by several literature overviews, but to date, no review article detailing their activity against pathogens has been proposed. This article thus aims at providing a comprehensive overview of the field including early studies from the 1970s and 1980s with a specific focus on results published from the late 1990s until nowadays. Publications presenting the data of almost 50 different natural products are reported. Detailed activities encompass the fields of leishmanicidal, antiplasmodial, trypanocidal, fungicidal, and mainly antibacterial and antimycobacterial compounds. The few published studies aimed at exploring the structure-activity relationship in these series are also described. Around 15 different synthetic analogues of natural products, selected among the most active reported, are also presented. The rare data available regarding the antipathogenic mode of action of these products are recalled, and finally, a comparative analysis of the available biological data is proposed with the aim of identifying the key structural determinants for the bioactivity against pathogens of these unusual compounds.

3.
Bioorg Chem ; 146: 107295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513326

RESUMO

A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as ß-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in ß-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.


Assuntos
Doença de Gaucher , Imino Açúcares , Humanos , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase , Pirrolidinas/farmacologia , Inibidores Enzimáticos/farmacologia
4.
Chemistry ; 29(53): e202301210, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37313991

RESUMO

The first phosphorus dendrimers built on a cyclotriphosphazene core and decorated with six or twelve monofluorocyclooctyne units were prepared. A simple stirring allowed the grafting of N-hexyl deoxynojirimycin inhitopes onto their surface by copper-free strain promoted alkyne-azide cycloaddition click reaction. The synthesized iminosugars clusters were tested as multivalent inhibitors of the biologically relevant enzymes ß-glucocerebrosidase and acid α-glucosidase, involved in Gaucher and Pompe lysosomal storage diseases, respectively. For both enzymes, all the multivalent compounds were more potent than the reference N-hexyl deoxynojirimycin. Remarkably, the final dodecavalent compound proved to be one of the best ß-glucocerebrosidase inhibitors described to date. These cyclotriphosphazene-based deoxynojirimycin dendrimers were then evaluated as pharmacological chaperones against Gaucher disease. Not only did these multivalent constructs cross the cell membranes but they were also able to increase ß-glucocerebrosidase activity in Gaucher cells. Notably, dodecavalent compound allowed a 1.4-fold enzyme activity enhancement at a concentration as low as 100 nM. These new monofluorocyclooctyne-presenting dendrimers may further find numerous applications in the synthesis of multivalent objects for biological and pharmacological purposes.


Assuntos
Dendrímeros , Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/metabolismo , Glucosilceramidase/uso terapêutico , Inibidores Enzimáticos/metabolismo
5.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885805

RESUMO

Pompe disease (PD), a lysosomal storage disease, is caused by mutations of the GAA gene, inducing deficiency in the acid alpha-glucosidase (GAA). This enzymatic impairment causes glycogen burden in lysosomes and triggers cell malfunctions, especially in cardiac, smooth and skeletal muscle cells and motor neurons. To date, the only approved treatment available for PD is enzyme replacement therapy (ERT) consisting of intravenous administration of rhGAA. The limitations of ERT have motivated the investigation of new therapies. Pharmacological chaperone (PC) therapy aims at restoring enzymatic activity through protein stabilization by ligand binding. PCs are divided into two classes: active site-specific chaperones (ASSCs) and the non-inhibitory PCs. In this review, we summarize the different pharmacological chaperones reported against PD by specifying their PC class and activity. An emphasis is placed on the recent use of these chaperones in combination with ERT.


Assuntos
Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Animais , Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II/enzimologia , Humanos , Preparações Farmacêuticas/química , alfa-Glucosidases/metabolismo
6.
Bioorg Med Chem Lett ; 30(2): 126796, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31757669

RESUMO

Dysregulation of the ceramide transport protein CERT is associated to diseases such as cancer. In search for new CERT START domain ligands, N-dodecyl-deoxynojirimycin (N-dodecyl-DNJ) iminosugar was found to display, as a ceramide mimic, significant protein recognition. To reinforce the lipophilic interactions and strengthen this protein binding, a docking study was carried out in order to select the optimal position on which to introduce an additional O-alkyl chain on N-dodecyl-DNJ. Analysis of the calculated poses for three different regioisomers indicated an optimal calculated interaction pattern for N,O3-didodecyl-DNJ. The two most promising regioisomers were prepared by a divergent route and their binding to the CERT START domain was evaluated with fluorescence intensity (FLINT) binding assay. N,O3-didodecyl-DNJ was confirmed to be a new binder prototype with level of protein recognition in the FLINT assay comparable to the best known ligands from the alkylated HPA-12 series. This work opens promising perspectives for the development of new inhibitors of CERT-mediated ceramide trafficking.


Assuntos
Glucosamina/análogos & derivados , Proteínas Serina-Treonina Quinases/química , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/metabolismo , Sítios de Ligação , Ceramidas/metabolismo , Glucosamina/química , Glucosamina/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Estereoisomerismo , Termodinâmica
7.
Org Biomol Chem ; 18(39): 7852-7861, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32975266

RESUMO

A concise and asymmetric synthesis of the enantiomeric pyrrolidines 2 and ent-2 are herein reported. Both enantiomers were assessed as ß-GCase inhibitors. While compound ent-2 acted as a poor competitive inhibitor, its enantiomer 2 proved to be a potent non-competitive inhibitor. Docking studies were carried out to substantiate their respective protein binding mode. Both pyrrolidines were also able to enhance lysosomal ß-GCase residual activity in N370S homozygous Gaucher fibroblasts. Notably, the non-competitive inhibitor 2 displayed an enzyme activity enhancement comparable to that of reference compounds IFG and NN-DNJ. This work highlights the impact of inhibitors chirality on their protein binding mode and shows that, beyond competitive inhibitors, the study of non-competitive ones can lead to the identification of new relevant parmacological chaperones.


Assuntos
Doença de Gaucher
8.
Molecules ; 25(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660097

RESUMO

Protein misfolding induced by missense mutations is the source of hundreds of conformational diseases. The cell quality control may eliminate nascent misfolded proteins, such as enzymes, and a pathological loss-of-function may result from their early degradation. Since the proof of concept in the 2000s, the bioinspired pharmacological chaperone therapy became a relevant low-molecular-weight compound strategy against conformational diseases. The first-generation pharmacological chaperones were competitive inhibitors of mutant enzymes. Counterintuitively, in binding to the active site, these inhibitors stabilize the proper folding of the mutated protein and partially rescue its cellular function. The main limitation of the first-generation pharmacological chaperones lies in the balance between enzyme activity enhancement and inhibition. Recent research efforts were directed towards the development of promising second-generation pharmacological chaperones. These non-inhibitory ligands, targeting previously unknown binding pockets, limit the risk of adverse enzymatic inhibition. Their pharmacophore identification is however challenging and likely requires a massive screening-based approach. This review focuses on second-generation chaperones designed to restore the cellular activity of misfolded enzymes. It intends to highlight, for a selected set of rare inherited metabolic disorders, the strategies implemented to identify and develop these pharmacologically relevant small organic molecules as potential drug candidates.


Assuntos
Ativadores de Enzimas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Chaperonas Moleculares/uso terapêutico , Ativadores de Enzimas/química , Inibidores Enzimáticos/química , Humanos , Chaperonas Moleculares/química , Mutação , Dobramento de Proteína
9.
Molecules ; 24(2)2019 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-30669468

RESUMO

A series of simple C-alkyl pyrrolidines already known as cytotoxic inhibitors of ceramide glucosylation in melanoma cells can be converted into their corresponding 6-membered analogues by means of a simple ring expansion. This study illustrated how an isomerisation from iminosugar pyrrolidine toward piperidine could invert their targeting from glucosylceramide (GlcCer) formation toward GlcCer hydrolysis. Thus, we found that the 5-membered ring derivatives did not inhibit the hydrolysis reaction of GlcCer catalysed by lysosomal ß-glucocerebrosidase (GBA). On the other hand, the ring-expanded C-alkyl piperidine isomers, non-cytotoxic and inactive regarding ceramide glucosylation, revealed to be potent inhibitors of GBA. A molecular docking study showed that the positions of the piperidine ring of the compound 6b and its analogous 2-O-heptyl DIX 8 were similar to that of isofagomine. Furthermore, compound 6b promoted mutant GBA enhancements over 3-fold equivalent to that of the related O-Hept DIX 8 belonging to one of the most potent iminosugar-based pharmacological chaperone series reported to date.


Assuntos
Ceramidas/química , Inibidores Enzimáticos/química , Glucosilceramidase/antagonistas & inibidores , Imino Açúcares/química , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Glucosilceramidase/metabolismo , Humanos , Hidrólise , Imino Piranoses/química , Isomerismo , Lisossomos , Melanoma Experimental , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Piperidinas/química , Ligação Proteica , Pirrolidinas/química , Relação Estrutura-Atividade
10.
Chembiochem ; 19(23): 2438-2442, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30303294

RESUMO

The first biologically relevant clickable probe related to the antitumor marine lipid jaspine B is reported. The concise synthetic route to both enantiomers relied on the supercritical fluid chromatography (SFC) enantiomeric resolution of racemic materials. The eutomeric dextrogyre derivative represents the first jaspine B analogue with enhanced cytotoxicity with IC50 down to 30 nm. These enantiomeric probes revealed a chiralitydependent cytoplasmic imaging of U2OS cancer cells by in situ click labeling.


Assuntos
Alcinos/química , Antineoplásicos/química , Corantes Fluorescentes/química , Sondas Moleculares/química , Esfingosina/análogos & derivados , Alcinos/síntese química , Alcinos/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Química Click , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Humanos , Sondas Moleculares/síntese química , Sondas Moleculares/toxicidade , Esfingosina/síntese química , Esfingosina/toxicidade , Estereoisomerismo
11.
Bioorg Med Chem ; 25(6): 1984-1989, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237558

RESUMO

The enigmatical dichotomy between the two CERT/GPBP protein isoforms, their vast panel of biological implications and the scarcity of known antagonist series call for new ligand chemotypes identification. We report the design of iminosugar-based ceramide mimics for the development of new START domain ligands potentially targeting either protein isoforms. Strategic choice of (i) an iminoxylitol core structure and (ii) the positioning of two dodecyl residues led to an extent of protein binding comparable to that of the natural cargo lipid ceramide or the archetypical inhibitor HPA-12. Molecular docking study evidenced a possible mode of protein binding fully coherent with the one observed in crystalline co-structures of known ligands. The present study thus paves the way for cellular CERT inhibition studies en route to the development of pharmacological tools aiming at deciphering the respective function and therapeutic potential of the two CERT/GPBP protein isoforms.


Assuntos
Imino Açúcares/química , Mimetismo Molecular , Isoformas de Proteínas/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Desenho de Fármacos , Imino Açúcares/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
12.
Chemistry ; 22(49): 17514-17525, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27628428

RESUMO

In 2001, two years before the disclosure of the CERT-associated Cer transfer machinery, N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamides (HPAs) were described as the first, and to date unique, family of intracellular Cer trafficking inhibitors. The dodecanamide derivative, HPA-12, turned out to be a benchmark as a cellular inhibitor of CERT-mediated de novo sphingomyelin biosynthesis. In only 15 years after its first disclosure, this compound has prompted a growing number of biological and chemical studies. Its initial chemical development closely paralleled the study of the CERT protein. It was only after its structural revision in 2011 that HPA-12 received broad attention from the synthetic chemistry community, leading to novel analogues with enhanced protein binding. This Minireview aims at presenting an exhaustive report of the syntheses of HPA-12 and analogues. Biological activities of this CERT inhibitor and structure-activity relationships are also presented to afford a comprehensive overview of the chemistry and biology of the HPA series.


Assuntos
Amidas/química , Ceramidas/química , Movimento Celular , Relação Estrutura-Atividade
13.
Chemistry ; 22(19): 6676-86, 2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27031925

RESUMO

A series of 12 analogues of the Cer transfer protein (CERT) antagonist HPA-12 with long aliphatic chains were prepared as their (1R,3S)-syn and (1R,3R)-anti stereoisomers from pivotal chiral oxoamino acids. The enantioselective access to these intermediates as well as their ensuing transformation relied on a practical crystallization-induced asymmetric transformation (CIAT) process. Sonogashira coupling followed by triple bond reduction and thiophene ring hydrodesulfurization (HDS) into the corresponding alkane moieties was then implemented to complete the synthetic routes delivering the targeted HPA-12 analogues in concise 4- to 6-step reaction sequences. Ten compounds were evaluated regarding their ability to bind to the CERT START domain by using the recently developed time-resolved FRET-based homogeneous (HTR-FRET) binding assay. The introduction of a lipophilic appendage on the phenyl moiety led to an overall 10- to 1000-fold enhancement of the protein binding, with the highest effect being observed for a n-hexyl residue in the meta position. The importance of the phenyl ring for the activity was indicated by the reduced potency of the 3-deoxyphytoceramide aliphatic analogues. The 1,3-syn stereoisomers were systematically more potent than their 1,3-anti analogues. In silico studies were used to rationalized these trends, leading to a model of protein recognition coherent with the stronger binding of (1R,3S)-syn HPAs.


Assuntos
Amidas/química , Ceramidas/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Tiofenos/química , Amidas/metabolismo , Transporte Biológico , Ceramidas/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
14.
Nat Prod Rep ; 32(1): 49-75, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25275665

RESUMO

Covering: up to March 2014. Previous review on the topic: B. W. Gung, C. R. Chim., 2009, 12, 489-505. Chiral α-functional lipidic propargylic alcohols extracted from marine sponges, in particular of the pacific genus Petrosia, constitute a class of acetylenic natural products exhibiting remarkable in vitro biological activities, especially anti-tumoral cytotoxicity. These properties, associated to functionalities that are uncommon among natural products, have prompted recent projects on asymmetric total synthesis. On the basis of a three-sector structural typology, three main sub-types of secondary alkynylcarbinols (with either alkyl, alkenyl, or alkynyl as the second substituent) can be identified as the minimal pharmacophoric units. Selected natural products containing these functionalities have been targeted using previously known or on purpose-designed procedures, where the stereo-determining step can be: (i) a C-C bond forming reaction (e.g. the Zn-mediated addition of alkynyl nucleophiles to aldehydes in the presence of chiral aminoalcohols), (ii) a functional layout (e.g. the asymmetric organo- or metallo-catalytic reduction of ynones), or (iii) an enantiomeric resolution (e.g. a lipase-mediated kinetic resolution via acetylation). The promising medicinal importance of these targets is finally surveyed, and future investigation prospects are proposed, such as: (i) further total synthesis of known or future extraction products; (ii) the synthesis of non-natural analogues, with simpler lipophilic environments of the alkynylcarbinol-based pharmacophoric units; (iii) the variation and optimization of both the pharmacophoric units and their lipophilic environment; and (iv) investigations into the biological mode of action of these unique structures.


Assuntos
Alcinos , Biologia Marinha , Metanol , Poríferos/química , Alcinos/química , Alcinos/isolamento & purificação , Alcinos/farmacologia , Animais , Metanol/análogos & derivados , Metanol/química , Estereoisomerismo
15.
Chemistry ; 21(2): 778-90, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25382666

RESUMO

The organocatalytic enantioselective conjugate addition of secondary ß-ketoamides to α,ß-unsaturated carbonyl compounds is reported. Use of bifunctional Takemoto's thiourea catalyst allows enantiocontrol of the reaction leading either to simple Michael adducts or spirocyclic aminals in up to 99 % ee. The origin of the enantioselectivity has been rationalised based on combined DFT calculations and kinetic analysis. This study provides a deeper understanding of the reaction mechanism, which involves a predominant role of the secondary amide proton, and clarifies the complex interactions occurring between substrates and the catalyst.


Assuntos
Amidas/química , Nitrilas/química , Alcenos/química , Catálise , Modelos Moleculares , Análise Espectral , Estereoisomerismo , Tioureia/química
16.
J Org Chem ; 80(11): 5386-94, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25961794

RESUMO

Bidirectional syntheses of C2-symmetrical lipids embedding two terminal alkynylcarbinol pharmacophores are reported. Naturally occurring chiral alkenylalkynylcarbinol units were generated using Pu's procedure for enantioselective addition of terminal alkynes to aldehydes, allowing the first asymmetric synthesis of (3R,4E,16E,18R)-icosa-4,16-diene-1,19-diyne-3,18-diol, isolated from Callyspongia pseudoreticulata. Two synthetic analogues embedding the recently uncovered (S)-dialkynylcarbinol pharmacophore were secured using Carreira's procedure adapted to ynal substrates. The dramatic effect of the carbinol configuration on cytotoxicity was confirmed with submicromolar IC50 values against HCT116 cells.


Assuntos
Alcinos/química , Di-Inos/síntese química , Lipídeos/síntese química , Metanol/química , Fenômenos Biológicos , Catálise , Di-Inos/química , Células HCT116 , Humanos , Concentração Inibidora 50 , Lipídeos/química , Estrutura Molecular , Estereoisomerismo
17.
Bioorg Med Chem Lett ; 25(20): 4652-6, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342865

RESUMO

Chiral lipidic dialkynylcarbinols (DACs), recently highlighted as antitumoral pharmacophores, have been conjugated to difluoroboron-dipyrromethene (bodipy), 7-hydroxy-coumarine, and 7-nitro-benzoxadiazole (NBD) fluorophore motifs through triazole clips. The labeled lipids preserve cytotoxic activity against HCT116 cells, and fluorescence microscopy of the stained cells showed clear signals in the intra-cellular membrane system. While the bodipy conjugate also labels lipid droplets very brightly, as expected, the coumarine and NBD probes appear as promising specific tools for the identification of the intra-cellular targets of DACs' cytotoxicity.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Lipídeos/química , Metanol/análogos & derivados , Metanol/química , Metanol/farmacologia , Antineoplásicos/análise , Antineoplásicos/síntese química , Compostos de Boro/análise , Compostos de Boro/síntese química , Compostos de Boro/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/síntese química , Células HCT116 , Células HeLa , Humanos , Metanol/análise , Metanol/síntese química , Microscopia de Fluorescência , Imagem Molecular , Estrutura Molecular , Relação Estrutura-Atividade
18.
Bioorg Med Chem ; 23(9): 2004-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25818765

RESUMO

The first unified synthetic route to the four enantiopure HPA-12 stereoisomers in multi-gram scale is reported based on Crystallization-Induced Asymmetric Transformation (CIAT) technology. This preparative stereoselective synthesis allowed the unprecedented comparative evaluation of HPA-12 stereoisomers regarding their interaction with the CERT START domain. In vitro binding assay coupled to in silico docking approach indicate a possible interaction for the four derivatives. The first TR-FRET homogeneous-phase assay was developed to quantify their binding to the START domain, allowing complete determination of HPA-12 EC50. Results indicate that not only the (1R,3S) lead to the strongest binding, but that both 1R and 3S stereocenters similarly contribute to extent of recognition This automated homogenous assay further opens up promising prospect for the identification of novel potential CERT antagonist by means of high throughput screening.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Amidas/química , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
19.
Chem Biodivers ; 12(7): 1115-25, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26172331

RESUMO

A new sphingolipid hybrid molecule was designed to assemble, within a tail-to-tail double-chain structure, the ceramide hydrophilic moiety and the tetrahydrofuran pharmacophore of jaspine B, a natural product known to interfere with sphingolipid metabolism. This compound was prepared through acylation of sphingosine with a jaspine B derivative bearing a COOH group in the terminal position of the aliphatic backbone. This new hybrid molecule was evaluated for its capacities to affect melanoma cell viability and sphingolipid metabolism. While retaining the cytotoxicity of ceramide itself, this compound was shown to lower the sphingomyelin cellular levels and significantly enhance the production of sphingosine-1-phosphate, thus representing a novel sphingolipid metabolism modulator.


Assuntos
Produtos Biológicos/farmacologia , Ceramidas/farmacologia , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ceramidas/química , Ceramidas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Conformação Molecular , Esfingolipídeos/química , Esfingosina/química , Esfingosina/metabolismo , Esfingosina/farmacologia , Relação Estrutura-Atividade
20.
Chembiochem ; 15(17): 2522-8, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25256104

RESUMO

A highly compartmentalized enzymatic network regulates the pro-apoptotic and proliferative effects of sphingolipids. Over-conversion of ceramide (Cer) correlates with insensitivity to apoptosis signaling (in response to chemotherapy) and to drug resistance of cancer cells. De novo sphingomyelin biosynthesis relies on non-vesicular ceramide trafficking by the CERT (CERamide Transfer) protein. Therefore, blocking CERT transfer, thus leading to increased intracellular ceramide availability, represents a potential anticancer strategy. Our study is based on the implementation of an in vitro binding assay, supported by in silico molecular docking. It constitutes the first attempt to explore at the molecular level for the identification of novel CERT ligands. This approach is the first step toward in silico design and optimization of CERT inhibitor candidates, potentially relevant as innovative ceramide-transfer-targeting therapeutic agents.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Ceramidas/metabolismo , Transporte Biológico/efeitos dos fármacos , Ligantes , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA