Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 26(11): 13961-13972, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877441

RESUMO

We report on a new technique for entanglement distillation of the bipartite continuous variable state of spatially correlated photons generated in the spontaneous parametric down-conversion process (SPDC), where tunable non-Gaussian operations are implemented and the post-processed entanglement is certified in real-time using a single-photon sensitive electron multiplying CCD (EMCCD) camera. The local operations are performed using non-Gaussian filters modulated into a programmable spatial light modulator and, by using the EMCCD camera for actively recording the probability distributions of the twin-photons, one has fine control of the Schmidt number of the distilled state. We show that even simple non-Gaussian filters can be finely tuned to a ∼67% net gain of the initial entanglement generated in the SPDC process.

2.
Phys Rev Lett ; 115(9): 090401, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371631

RESUMO

A long-standing problem in quantum mechanics is the minimum number of observables required for the characterization of unknown pure quantum states. The solution to this problem is especially important for the developing field of high-dimensional quantum information processing. In this work we demonstrate that any pure d-dimensional state is unambiguously reconstructed by measuring five observables, that is, via projective measurements onto the states of five orthonormal bases. Thus, in our method the total number of different measurement outcomes (5d) scales linearly with d. The state reconstruction is robust against experimental errors and requires simple postprocessing, regardless of d. We experimentally demonstrate the feasibility of our scheme through the reconstruction of eight-dimensional quantum states, encoded in the momentum of single photons.

3.
Opt Express ; 20(4): 3753-72, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418133

RESUMO

The state of spatially correlated down-converted photons is usually treated as a two-mode Gaussian entangled state. While intuitively this seems to be reasonable, it is known that new structures in the spatial distributions of these photons can be observed when the phase-matching conditions are properly taken into account. Here, we study how the variances of the near- and far-field conditional probabilities are affected by the phase-matching functions, and we analyze the role of the EPR-criterion regarding the non-Gaussianity and entanglement detection of the spatial two-photon state of spontaneous parametric down-conversion (SPDC). Then we introduce a statistical measure, based on the negentropy of the joint distributions at the near- and far-field planes, which allows for the quantification of the non-Gaussianity of this state. This measure of non-Gaussianity requires only the measurement of the diagonal covariance sub-matrices, and will be relevant for new applications of the spatial correlation of SPDC in CV quantum information processing.

4.
Opt Express ; 19(4): 3542-52, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369178

RESUMO

We present the experimental quantum tomography of 7- and 8-dimensional quantum systems based on projective measurements in the mutually unbiased basis (MUB-QT). One of the advantages of MUB-QT is that it requires projections from a minimal number of bases to be performed. In our scheme, the higher dimensional quantum systems are encoded using the propagation modes of single photons, and we take advantage of the capabilities of amplitude- and phase-modulation of programmable spatial light modulators to implement the MUB-QT.

5.
Sci Rep ; 11(1): 20489, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650177

RESUMO

Certification of quantum nonlocality plays a central role in practical applications like device-independent quantum cryptography and random number generation protocols. These applications entail the challenging problem of certifying quantum nonlocality, something that is hard to achieve when the target quantum state is only weakly entangled, or when the source of errors is high, e.g. when photons propagate through the atmosphere or a long optical fiber. Here we introduce a technique to find a Bell inequality with the largest possible gap between the quantum prediction and the classical local hidden variable limit for a given set of measurement frequencies. Our method represents an efficient strategy to certify quantum nonlocal correlations from experimental data without requiring extra measurements, in the sense that there is no Bell inequality with a larger gap than the one provided. Furthermore, we also reduce the photodetector efficiency required to close the detection loophole. We illustrate our technique by improving the detection of quantum nonlocality from experimental data obtained with weakly entangled photons.

6.
Sci Rep ; 3: 2316, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23897033

RESUMO

The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA