Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytopathology ; 111(5): 862-869, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33258410

RESUMO

It is well described that viral infections stimulate the emission of plant volatiles able to recruit viral vectors thereby promoting virus spread. In contrast, much less is known on the effects that emitted volatiles may have on the metabolism of healthy neighboring plants, which are potential targets for new infections through vector transmission. Watermelon mosaic virus (WMV) (genus Potyvirus, family Potyviridae) is an aphid-transmitted virus endemic in cucurbit crops worldwide. We have compared gene expression profiles of WMV-infected melon plants with those of healthy or healthy-but-cohabited-with-infected plants. Pathogenesis-related (PR) and small heat shock protein encoding genes were deregulated in cohabited plants, and PR deregulation depended on the distance to the infected plant. The signaling was short distance in the experimental conditions used, and cohabiting had a moderate effect on the plant susceptibility to WMV. Static headspace experiments showed that benzaldehyde and γ-butyrolactone were significantly over-emitted by WMV-infected plants. Altogether, our data suggest that perception of a volatile signal encoded by WMV-infected tissues triggers a response to prepare healthy tissues or/and healthy neighboring plants for the incoming infections.


Assuntos
Afídeos , Cucurbitaceae , Vírus de Plantas , Animais , Doenças das Plantas , Transcriptoma
2.
Int J Mol Sci ; 19(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177671

RESUMO

Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) is a major species that causes a tomato disease for which resistant tomato hybrids (mainly carriers of the Ty-1/Ty-3 gene) are being used widely. We have characterized begomoviruses severely affecting resistant tomato crops in Southeast Spain. Circular DNA was prepared from samples by rolling circle amplification, and sequenced by massive sequencing (2015) or cloning and Sanger sequencing (2016). Thus, 23 complete sequences were determined, all belonging to the TYLCV Israel strain (TYLCV-IL). Massive sequencing also revealed the absence of other geminiviral and beta-satellite sequences. A phylogenetic analysis showed that the Spanish isolates belonged to two groups, one related to early TYLCV-IL isolates in the area (Group 1), and another (Group 2) closely related to El Jadida (Morocco) isolates, suggesting a recent introduction. The most parsimonious evolutionary scenario suggested that the TYLCV isolates of Group 2 are back recombinant isolates derived from TYLCV-IS76, a recombinant virus currently predominating in Moroccan epidemics. Thus, an infectious Group 2 clone (TYLCV-Mu15) was constructed and used in in planta competition assays against TYLCV-IS76. TYLCV-Mu15 predominated in single infections, whereas TYLCV-IS76 did so in mixed infections, providing credibility to a scenario of co-occurrence of both types of isolates.


Assuntos
Begomovirus/patogenicidade , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia
3.
BMC Genomics ; 17: 429, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27267368

RESUMO

BACKGROUND: Viruses are among the most destructive and difficult to control plant pathogens. Melon (Cucumis melo L.) has become the model species for the agriculturally important Cucurbitaceae family. Approaches that take advantage of recently developed genomic tools in melon have been extremely useful for understanding viral pathogenesis and can contribute to the identification of target genes for breeding new resistant cultivars. In this work, we have used a recently described melon microarray for transcriptome profiling of two melon cultivars infected with two strains of Melon necrotic spot virus (MNSV) that only differ on their 3'-untranslated regions. RESULTS: Melon plant tissues from the cultivars Tendral or Planters Jumbo were locally infected with either MNSV-Mα5 or MNSV-Mα5/3'264 and analysed in a time-course experiment. Principal component and hierarchical clustering analyses identified treatment (healthy vs. infected) and sampling date (3 vs. 5 dpi) as the primary and secondary variables, respectively. Out of 7566 and 7074 genes deregulated by MNSV-Mα5 and MNSV-Mα5/3'264, 1851 and 1356, respectively, were strain-specific. Likewise, MNSV-Mα5/3'264 specifically deregulated 2925 and 1618 genes in Tendral and Planters Jumbo, respectively. The GO categories that were significantly affected were clearly different for the different virus/host combinations. Grouping genes according to their patterns of expression allowed for the identification of two groups that were specifically deregulated by MNSV-Mα5/3'264 with respect to MNSV-Mα5 in Tendral, and one group that was antagonistically regulated in Planters Jumbo vs. Tendral after MNSV-Mα5/3'264 infection. Genes in these three groups belonged to diverse functional classes, and no obvious regulatory commonalities were identified. When data on MNSV-Mα5/Tendral infections were compared to equivalent data on cucumber mosaic virus or watermelon mosaic virus infections, cytokinin-O-glucosyltransferase2 was identified as the only gene that was deregulated by all three viruses, with infection dynamics correlating with the amplitude of transcriptome remodeling. CONCLUSIONS: Strain-specific changes, as well as cultivar-specific changes, were identified by profiling the transcriptomes of plants from two melon cultivars infected with two MNSV strains. No obvious regulatory features shared among deregulated genes have been identified, pointing toward regulation through differential functional pathways.


Assuntos
Cucurbitaceae/genética , Cucurbitaceae/virologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Tombusviridae/fisiologia , Transcriptoma , Análise por Conglomerados , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Especificidade de Órgãos , Fenótipo
4.
Phytopathology ; 106(4): 395-406, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26667188

RESUMO

Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.


Assuntos
Doenças das Plantas/virologia , Potexvirus/enzimologia , RNA Polimerase Dependente de RNA/genética , Solanum lycopersicum/virologia , Sequência de Aminoácidos , Ciclopentanos/metabolismo , Meio Ambiente , Genótipo , Interações Hospedeiro-Patógeno , Solanum lycopersicum/genética , Solanum lycopersicum/ultraestrutura , Dados de Sequência Molecular , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Potexvirus/genética , Potexvirus/patogenicidade , Potexvirus/ultraestrutura , Estrutura Terciária de Proteína , Ácido Salicílico/metabolismo , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/ultraestrutura , Nicotiana/virologia
5.
Mol Plant Microbe Interact ; 28(4): 387-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25372121

RESUMO

Melon necrotic spot virus (MNSV) (genus Carmovirus, family Tombusviridae) is a single-stranded, positive-sense RNA virus that has become an experimental model for the analysis of cell-to-cell virus movement and translation of uncapped viral RNAs, whereas little is known about its replication. Analysis of the cytopathology after MNSV infection showed the specific presence of modified organelles that resemble mitochondria. Immunolocalization of the glycine decarboxylase complex (GDC) P protein in these organelles confirmed their mitochondrial origin. In situ hybridization and immunolocalization experiments showed the specific localization of positive-sense viral RNA, capsid protein (CP), and double-stranded (ds)RNA in these organelles meaning that replication of the virus takes place in association with them. The three-dimensional reconstructions of the altered mitochondria showed the presence of large, interconnected, internal dilations which appeared to be linked to the outside cytoplasmic environment through pores and/or complex structures, and with lipid bodies. Transient expression of MNSV p29 revealed that its specific target is mitochondria. Our data document the extensive reorganization of host mitochondria induced by MNSV, which provides a protected environment to viral replication, and show that the MNSV p29 protein is the primary determinant of this effect in the host.


Assuntos
Carmovirus/fisiologia , Cucurbitaceae/virologia , Interações Hospedeiro-Patógeno/fisiologia , Mitocôndrias/ultraestrutura , Mitocôndrias/virologia , Replicação Viral/fisiologia , Carmovirus/patogenicidade , Cucurbitaceae/citologia , Cucurbitaceae/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Doenças das Plantas , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Viruses ; 13(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668729

RESUMO

Plant viruses are obligate parasites that need to usurp plant cell metabolism in order to infect their hosts. Imaging techniques have been used for quite a long time to study plant virus-host interactions, making it possible to have major advances in the knowledge of plant virus infection cycles. The imaging techniques used to study plant-virus interactions have included light microscopy, confocal laser scanning microscopy, and scanning and transmission electron microscopies. Here, we review the use of these techniques in plant virology, illustrating recent advances in the area with examples from plant virus replication and virus plant-to-plant vertical transmission processes.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/genética , Plantas/virologia , Replicação Viral/genética , Animais , Interações entre Hospedeiro e Microrganismos/genética , Transmissão Vertical de Doenças Infecciosas , Microscopia Confocal/métodos
7.
J Virol Methods ; 278: 113837, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32061591

RESUMO

Melon necrotic spot virus (MNSV) is endemic in cucurbit crops worldwide, causing epidemic outbreaks from time to time. MNSV is transmitted in nature by a soil-inhabiting fungus and also through seeds, making its detection in seed certification programs a necessity. Polyclonal antisera and RT-PCR-based detection assays have been developed for MNSV, but up to now no monoclonal antibodies (mAbs) have been described for this virus. In this study, we have produced mAbs in BALB/c mice against the MNSV over-expressed coat protein (CP). Titers of the antibodies produced against the recombinant MNSV CP ranged around 10-3-10-4 and the IgG yields for each mAb from ascitic fluids ranged from 1.51 to 6 mg/mL. Supernatants from ten hybridoma cell lines were evaluated in Western blot analysis and seven of them efficiently recognized the MNSV CP in crude extracts of MNSV-infected leaf material; the 2D4H4 hybridoma cell line was selected for further purification and characterization. The isotype of the 2D4H4 immunoglobulin class was identified as IgG2a and kappa light-chain. Western-blot analyses showed that mAb 2D4H4 provided sensitive and specific detection of MNSV. A TAS-ELISA protocol was developed for mAb 2D4H4. Using this protocol, limits of detection of 1:20,480 and 1:10,240 (g/mL, w/v) were attained for the homologous isolate and a heterologous MNSV isolate, respectively. Moreover, mAb 2D4H4 was used successfully to localize the MNSV CP in infected cells by immunocytochemistry/transmission electron microscopy, illustrating the usefulness of this mAb for advanced cellular studies.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Tombusviridae/imunologia , Animais , Linhagem Celular , Hibridomas , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Plantas/virologia , Folhas de Planta/virologia
8.
Front Plant Sci ; 9: 1810, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574159

RESUMO

While recent pepino mosaic virus (PepMV; species Pepino mosaic virus, genus Potexvirus, family Alphaflexiviridae) epidemics seem to be predominantly caused by isolates of the CH2 strain, PepMV epidemics in intensive tomato crops in Spain are caused by both CH2 and EU isolates that co-circulate, representing a challenge in terms of control, including cross-protection. In this work, we hypothesized that mixed infections with two mild isolates of the EU and CH2 strains (PepMV-Sp13 and -PS5, respectively) may be useful in PepMV cross-protection in Spanish epidemics, providing protection against a broad range of aggressive isolates. Thus, we performed a range of field trials and an experimental evolution assay to determine the phenotypic and genetic stability of PepMV-Sp13 and -PS5 mixed infections, as well as their cross-protective efficiency. Our results showed that: (i) the phenotype of PepMV-Sp13 and -PS5 mixed infections was mild and did not change significantly when infecting different tomato cultivars or under different environmental conditions in Spain, (ii) PepMV-Sp13 and -PS5 mixed infections provided more efficient protection against two aggressive EU and CH2 isolates than single infections, and (iii) PepMV-Sp13 and -PS5, either in single or in mixed infections, were less variable than other two PepMV isolates occurring naturally in PepMV epidemics in Spain.

9.
Front Microbiol ; 9: 3188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622528

RESUMO

The emerging lettuce big-vein disease (LBVD) is causing losses in lettuce production ranging from 30 to 70% worldwide. Several studies have associated this disease with Mirafiori lettuce big-vein virus (MiLBVV) alone or in mixed infection with lettuce big-vein associated virus (LBVaV). We used Illumina small RNA sequencing (sRNA-seq) to identify viruses present in symptomatic lettuce plants from commercial fields in Southern Spain. Data analysis using the VirusDetect tool showed the consistent presence of MiLBVV and LBVaV in diseased plants. Populations of MiLBVV and LBVaV viral small RNAs (sRNAs) were characterized, showing features essentially similar to those of other viruses, with the peculiarity of an uneven asymmetric distribution of MiLBVV virus-derived small RNAs (vsRNAs) for the different polarities of genomic RNA4 vs. RNAs1 to 3. Sanger sequencing of coat protein genes was used to study MiLBVV and LBVaV phylogenetic relationships and population genetics. The Spanish MiLBVV population was composed of isolates from three well-differentiated lineages and reflected almost all of the diversity reported for the MiLBVV species, whereas the LBVaV population showed very little genetic differentiation at the regional scale but lineage differentiation at a global geographical scale. Universal primers were used to detect and quantify the accumulation of MiLBVV and LBVaV in field samples; both symptomatic and asymptomatic plants from affected fields carried equal viral loads, with LBVaV accumulating at higher levels than MiLBVV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA