Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Inorg Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934463

RESUMO

The impact that the anion and alkyl group has on the electronic structures and magnetic properties of four mononuclear Mn(III) complexes is explored in [Mn(salEen-Br)2]Y (salEen-Br = 2-{[2-(ethylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 1 and BF4-·1/3CH2Cl2 2) and [Mn(salBzen-Br)2]Y (salBzen-Br = 2-{[2-(benzylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 3 and BF4- 4). X-ray structures of [Mn(salEen-Br)2]ClO4·0.45C6H14 1-hexane, [Mn(salEen-Br)2]BF4·0.33CH2Cl2·0.15C6H14 2-dcm-hexane, and 3-4 reveal that they crystallize in ambient conditions in the monoclinic P21/c space group. Lowering the temperature, 2-dcm-hexane uniquely exhibits a structural phase transition toward a monoclinic P21/n crystal structure determined at 100 K with the unit cell trebling in size. Remarkably, at room temperature, the axially elongated Jahn-Teller axis in 2-dcm-hexane is poorly defined but becomes clearer at low temperature after the phase transition. Magnetic susceptibility measurements of 1-4 reveal that only 3 and 4 show slow relaxation of magnetization with Δeff/kB = 27.9 and 20.7 K, implying that the benzyl group is important for observing single-molecule magnet (SMM) properties. Theoretical calculations demonstrate that the alkyl group subtly influences the orbital levels and therefore very likely the observed SMM properties.

2.
Angew Chem Int Ed Engl ; 63(2): e202303146, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37539652

RESUMO

The synthesis of single-molecule magnets (SMMs), magnetic complexes capable of retaining magnetization blocking for a long time at elevated temperatures, has been a major concern for magnetochemists over the last three decades. In this review, we describe basic SMMs and the different approaches that allow high magnetization-blocking temperatures to be reached. We focus on the basic factors affecting magnetization blocking, magnetic axiality and the height of the blocking barrier, which can be used to group different families of complexes in terms of their SMM efficiency. Finally, we discuss several practical routes for the design of mono- and polynuclear complexes that could be applied in memory devices.

3.
Inorg Chem ; 62(17): 6642-6648, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068219

RESUMO

The synthesis, structural, and magnetic characterization of [FeIII4LnIII4(teaH)8(N3)8(H2O)] (Ln = Gd and Y) and the previously reported isostructural Dy analogue are discussed. The commonly held belief that both FeIII and GdIII can be regarded as isotropic ions is shown to be an oversimplification. This conclusion is derived from the magnetic data for the YIII analogue in terms of the zero-field splitting seen for FeIII and from the fact that the magnetic data for the new GdIII analogue can only be fit employing an additional anisotropy term for the GdIII ions. Furthermore, the Fe4Gd4 ring shows slow relaxation of magnetization. Our analysis of the experimental magnetic data employs both density functional theory as well as the finite-temperature Lanczos method which finally enables us to provide an almost perfect fit of magnetocaloric properties.

4.
J Am Chem Soc ; 144(32): 14888-14896, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35918175

RESUMO

Metal-organic frameworks (MOFs) provide versatile platforms to construct multi-responsive materials. Herein, by introducing the neutral tetradentate ligand and the linear dicyanoaurate(I) anion, we reported a rare cationic MOF [FeII(TPB){AuI(CN)2}]I·4H2O·4DMF (TPB = 1,2,4,5-tetra(pyridin-4-yl)benzene) with hysteretic spin-crossover (SCO) behavior near room temperature. This hybrid framework with an open metal site (AuI) exhibits redox-programmable capability toward dihalogen molecules. By means of post-synthetic modification, all the linear [AuI(CN)2]- linkers can be oxidized to square planar [AuIII(CN)2X2]- units, which results in the hysteretic SCO behaviors switching from one-step to two-step for Br2 and three-step for I2. More importantly, the stepwise SCO behaviors can go back to one-step via the reduction by l-ascorbic acid (AA). Periodic DFT calculations using various SCAN-type exchange-correlation functionals have been employed to rationalize the experimental data. Hence, these results demonstrate for the first time that switchable one-/two-/three-stepped SCO dynamics can be manipulated by chemical redox reactions, which opens a new perspective for multi-responsive molecular switches.

5.
Inorg Chem ; 61(29): 11124-11136, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35815859

RESUMO

Four novel CeIII mononuclear complexes of formulas [Ce(ntfa)3(MeOH)2] (1), [Ce(ntfa)3(5,5'-Me2bipy)] (2), [Ce(ntfa)3(terpy)] (3), and [Ce(ntfa)3(bipy)2] (4), where ntfa = 4,4,4-trifluoro-1-(naphthalen-2-yl)butane-1,3-dionato, 5,5'-Me2bipy = 5,5'-dimethyl-2,2'-dipyridyl, terpy = 2,2':6',2″-terpyridine, and bipy = 2,2'-bipyridine, have been synthesized and structurally characterized with CeIII displaying coordination numbers of 8, 8, 9, and 10, respectively. Magnetic measurements indicate that all the complexes show a field-induced single-ion magnet behavior under a small applied dc field. The magnetic analysis shows the relevance of the different spin relaxation mechanisms in the magnetic relaxation of the CeIII compounds, with special emphasis on the local-mode process. Multiconfigurational calculations were also performed to get more information on the axiality of the compounds.

6.
Inorg Chem ; 61(26): 9946-9959, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35737854

RESUMO

A new synthetic method allows isolating fluoride-bridged complexes Bu4N{[M(3NO2,5Br-H3L1,1,4)]2(µ-F)} (M = Dy, 1; M = Ho, 2; M = Gd, 3) and Bu4N{[Dy(3Br,5Cl-H3L1,2,4)]2(µ-F)}·2H2O, 4·2H2O. The crystal structures of 1·5CH3C6H5,·2·2H2O·0.75THF, 3, and 4·2H2O·2THF show that all of them are dinuclear compounds with linear single fluoride bridges and octacoordinated metal centers. Magnetic susceptibility measurements in the temperature range of 2-300 K reveal that the GdIII ions in 3 are weakly antiferromagnetically coupled, and this constitutes the first crystallographically and magnetically analyzed gadolinium complex with a fluoride bridge. Variable-temperature magnetization demonstrates a poor magnetocaloric effect for 3. Alternating current magnetic measurements for 1, 2, and 4·2H2O bring to light that 4·2H2O is an SMM, 1 shows an SMM-like behavior under a magnetic field of 600 Oe, while 2 does not show relaxation of the magnetization even under an applied magnetic field. In spite of this, 2 is the first fluoride-bridged holmium complex magnetically analyzed. DFT and ab initio calculations support the experimental magnetic results and show that apparently small structural differences between 1 and 4·2H2O introduce important changes in the dipolar interactions, from antiferromagnetic in 1 to ferromagnetic in 4·2H2O.

7.
Phys Chem Chem Phys ; 24(38): 23128-23134, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36128751

RESUMO

The magnetism of transition metal clusters has been for decades a complicated puzzle, with experimental results disagreeing with calculations performed within the density functional theory formalism. In this work, we provide a key to this puzzle by investigating the lowest-energy spin states of cobalt cluster, Con+ (n ≤ 5), using CASSCF/NEVPT2 calculations with very large active spaces. The geometries as well as the spin configurations adopted by the clusters in their ground-state are known from experiments, making Con+ clusters an ideal model system for theoretical investigation. Here, using the experimentally known geometries determined by far-infrared spectroscopy as inputs, we calculated the lowest-energy spin configurations of the clusters, revealing that the CASSCF/NEVPT2 formalism correctly predicts the preferred electronic configuration of the clusters known experimentally. This is in contrast to the widely used density functional theory, with results that depend on the selected exchange-correlation functional. The reasons for the failure of density functional theory, in opposition to CASSCF/NEVPT2, are discussed, providing a solid framework for investigating other transition metal and transition metal oxide clusters.

8.
Chemistry ; 27(66): 16440-16447, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34582589

RESUMO

We report the spin dynamic properties of non-substituted ferrocenium complexes. Ferrocenium shows a field-induced single-molecule magnet behaviour in DMF solution while cobaltocene lacks slow spin relaxation neither in powder nor in solution. Multireference quantum mechanical calculations give a non-Aufbau orbital occupation for ferrocenium with small first excitation energy that agrees with the relatively large measured magnetic anisotropy for a transition metal S=1/2 system. The analysis of the spin relaxation shows an important participation of quantum tunnelling, Raman, direct and local-mode mechanisms which depend on temperature and the external field conditions. The calculation of spin-phonon coupling constants for the vibrational modes shows that the first vibrational mode, despite having a low spin-phonon constant, is the most efficient process for the spin relaxation at low temperatures. In such conditions, vibrational modes with higher spin-phonon coupling constants are not populated. Additionally, the vibrational energy of this first mode is in excellent agreement with the experimental fitted value obtained from the local-mode mechanism.

9.
Inorg Chem ; 60(2): 570-573, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33356201

RESUMO

A metalloorganic capsule was synthesized where the ligand is a derivative of heptazine with three carboxylic groups that are coordinated to CuII cations, forming paddle-wheel motifs. Each nanocapsule is neutral, with 12 CuII centers and 8 ligands adopting a rhombicuboctahedron shape. It has almost 3 nm diameter, and the main intermolecular interactions in the solid are π··· π stacking between the C6N7 heptazine moieties. The nanocapsules can form monolayers deposited on graphite as observed by atomic force microscopy, which confirms their stability in solution.

10.
Phys Chem Chem Phys ; 23(3): 1976-1983, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33433544

RESUMO

The magnetic properties of mononuclear YbIII complexes have been explored by using multiconfigurational CASPT2/RASSI calculations. Such complexes, in particular the case of [Yb(trensal)] complex, have been proposed as molecular qubits due to their spin dynamics properties. We have verified the accuracy of the theoretical approach to study such systems by comparing with experimental magnetic data. In order to have a wide overview of the magnetic properties of mononuclear YbIII complexes, we have considered simple charged and neutral models, [Yb(H2O)n]3+ and [Yb(OH)3(H2O)n-3], for many coordination modes. Thus, the results for more than 100 models allow extraction of some conclusions about the best ligand distributions in the coordination sphere to tailor the magnetic properties. Some low coordination, between 3 and 5, complexes that have no experimental magnetic data have been studied computationally to check if they can present high magnetic anisotropy.

11.
Inorg Chem ; 58(4): 2610-2617, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30694042

RESUMO

Single-molecule magnets (SMMs), are regarded as excellent nanomaterials for high-density information storage and quantum computing. The local symmetry of the crystal field for the metal ion plays an important role in pursuing a high-performance SMM. Herein, two highly stable distorted hexagonal bipyramidal (quasi- D6 h) Dy complexes exhibiting slow relaxation of the magnetization are reported. A hexagonal bipyramidal Dy model complex with 18-crown-6 was also designed to study the relationship between magnetic anisotropy and symmetry. The combined experimental and theoretical results indicate that quantum tunneling is highly dependent on the local symmetries of the crystal field. The magnetic anisotropy becomes much stronger when the symmetry is closer to a standard D6 h geometry. These results support the conclusion that the hexagonal bipyramidal geometry is a viable one for the design of new classes of SMMs.

12.
J Chem Inf Model ; 58(10): 2085-2091, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30137983

RESUMO

Human infection by Mycobacterium tuberculosis (Mtb) continues to be a global epidemic. Computer-aided drug design (CADD) methods are used to accelerate traditional drug discovery efforts. One noncovalent interaction that is being increasingly identified in biological systems but is neglected in CADD is the anion-π interaction. The study reported herein supports the conclusion that anion-π interactions play a central role in directing the binding of phenyl-diketo acid (PDKA) inhibitors to malate synthase (GlcB), an enzyme required for Mycobacterium tuberculosis virulence. Using density functional theory methods (M06-2X/6-31+G(d)), a GlcB active site template was developed for a predictive model through a comparative analysis of PDKA-bound GlcB crystal structures. The active site model includes the PDKA molecule and the protein determinants of the electrostatic, hydrogen-bonding, and anion-π interactions involved in binding. The predictive model accurately determines the Asp 633-PDKA structural position upon binding and precisely predicts the relative binding enthalpies of a series of 2-ortho halide-PDKAs to GlcB. A screening model was also developed to efficiently assess the propensity of each PDKA analog to participate in an anion-π interaction; this method is in good agreement with both the predictive model and the experimental binding enthalpies for the 2-ortho halide-PDKAs. With the screening and predictive models in hand, we have developed an efficient method for computationally screening and evaluating the binding enthalpy of variously substituted PDKA molecules. This study serves to illustrate the contribution of this overlooked interaction to binding affinity and demonstrates the importance of integrating anion-π interactions into structure-based CADD.


Assuntos
Antituberculosos/farmacologia , Malato Sintase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Antituberculosos/química , Sítios de Ligação , Simulação por Computador , Malato Sintase/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica
13.
Chemistry ; 23(48): 11649-11661, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28605076

RESUMO

Three new closely related CoII YIII complexes of general formula [Co(µ-L)(µ-X)Y(NO3 )2 ] (X- =NO3- 1, benzoate 2, or 9-anthracenecarboxylato 3) have been prepared with the compartmental ligand N,N',N''-trimethyl-N,N''-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2 L). In these complexes, CoII and YIII are triply bridged by two phenoxide groups belonging to the di-deprotonated ligand (L2- ) and one ancillary anion X- . The change of the ancillary bridging group connecting CoII and YIII ions induces small differences in the trigonally distorted CoN3 O3 coordination sphere with a concomitant tuning of the magnetic anisotropy and intermolecular interactions. Direct current magnetic, high-frequency and -field EPR (HFEPR), frequency domain Fourier transform THz electron paramagnetic resonance (FD-FT THz-EPR) measurements, and ab initio theoretical calculations demonstrate that CoII ions in compounds 1-3 have large and positive D values (≈50 cm-1 ), which decrease with increasing the distortion of the pseudo-octahedral CoII coordination sphere. Dynamic ac magnetic susceptibility measurements indicate that compound 1 exhibits field-induced single-molecule magnet (SMM) behavior, whereas compounds 2 and 3 only display this behavior when they are magnetically diluted with diamagnetic ZnII (Zn/Co=10:1). In view of this, it is always advisable to use magnetically diluted complexes, in which intermolecular interactions and quantum tunneling of magnetism (QTM) would be at least partly suppressed, so that "hidden single-ion magnet (SIM)" behavior could emerge. Field- and temperature-dependence of the relaxation times indicate the prevalence of the Raman process in all these complexes above approximately 3 K.

14.
Inorg Chem ; 56(14): 8135-8146, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28650620

RESUMO

The two new MnIII dinuclear compounds [{Mn(H2O)(phen)}2(µ-4-CH3C6H4COO)2(µ-O)](ClO4)2·3CH3CN·H2O (1·3CH3CN·H2O) and [{Mn(H2O)(phen)}(µ-O)(µ-2-BrC6H4COO)2{Mn(NO3)(phen)}]NO3 (2) have been synthesized. Their structural data reveal significant differences in the shape of the coordination octahedron around the MnIII ions in both compounds. The different distortions from ideal geometry incite a very different magnetic behavior, affecting both the zero-field splitting parameters of the MnIII ions (DMn and EMn) and the magnetic interaction between them. Compound 1, with elongation in the monodentate ligand direction, shows antiferromagnetic coupling (ground state S = 0) and local DMn < 0, while compound 2, with compression in the oxo bridge direction, displays a ferromagnetic interaction (ground state S = 4) and local DMn > 0. Theoretical CASSCF and DFT calculations corroborate the different magnetic anisotropy and exchange coupling found in both compounds. Moreover, with the help of theoretical calculations, some interesting magneto-structural correlations have been found between the degree of distortion of the coordination octahedra and the magnetic coupling; it becomes more antiferromagnetic when the elongation parameter, Δ, in absolute value is increased.

15.
J Am Chem Soc ; 138(50): 16407-16416, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27936650

RESUMO

A family of isostructural, mononuclear CoII complexes with distorted trigonal bipyramidal coordination environments is reported. The degree of distortion as well as the overall symmetry of the molecules varies among the members of the series. Different experimental procedures resulted in the isolation of solvomorphs (pseudopolymorphs with different solvent content) for some of the family members. Importantly, their disparate packing arrangements lead to very different dynamic magnetic behavior. The results of magnetostructural correlations and ab initio calculations reveal that the deciding factor for SMM behavior is not the degree of distortion which, a priori, would be expected to be the case, but rather the interactions between neighboring molecules in the solid state.

16.
Inorg Chem ; 53(2): 676-8, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359111

RESUMO

The work presented herein shows the experimental and theoretical studies of a mononuclear nickel(II) complex with the largest magnetic anisotropy ever reported. The zero-field-splitting D parameter, extracted from the fits of the magnetization and susceptibility measurements, shows a large value of -200 cm(-1), in agreement with the theoretical value of -244 cm(-1) obtained with the CASPT2-RASSI method.

17.
Dalton Trans ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953548

RESUMO

The energy difference between different spin states of systems with transition metals is an outstanding challenge for electronic structure calculation methods. The small energy difference between high- and low-spin states in spin-crossover systems makes most post-Hartree-Fock or density functional theory-based methods provide inaccurate values. A test case of twenty systems showing spin transitions has been used to evaluate the accuracy of a new family of training meta-GGA (Generalized Gradient Approximation) functionals. One of the functionals of this new family provides comparable or even better values than the best functional reported so far for this type of system, the TPSSh hybrid meta-GGA functional, but without having to use the exact exchange term. It also improves the results obtained with the r2SCAN meta-GGA functional, which was the best alternative to the TPSSh hybrid functional. This makes it possible to calculate the spin energetics of any kind of compound, especially large systems or periodic structures where the exact exchange requires large computational resources.

18.
Dalton Trans ; 53(22): 9387-9405, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38757803

RESUMO

Five new ß-diketonate Ce3+ mononuclear complexes, [Ce(Btfa)3(H2O)2] (1), [Ce(Btfa)3(phen)] (2), [Ce(Btfa)3(bipy)] (3), [Ce(Btfa)3(terpy)] (4) and [Ce(Btfa)3(bathophen)(DMF)] (5), where Btfa- = 4,4,4-trifluoro-1-phenyl-1,3-butanedionate, phen = 1,10-phenanthroline, bipy = 2,2'-bipyridyl, terpy = 2,2':6',2''-terpyridine and bathophen = 4,7-diphenyl-1,10-phenanthroline, have been synthesized and structurally characterized through X-ray diffraction of single crystals. The central Ce3+ atom displays a coordination number of 8 for 1, 2 and 3 and of 9 for 4 and 5. Under a 0 T external magnetic field, none of the given compounds exhibits single molecule magnet (SMM) behaviour. However, a small magnetic field, between 0.02 and 0.1 T, is enough for all the compounds to exhibit slow relaxation of the magnetization. A comprehensive magnetic analysis, with experimental magnetic data and ab initio calculations, was undertaken for all the complexes, and the study highlights the significance of the different spin relaxation mechanisms that must be considered for a Ce3+ lanthanide ion.

19.
J Am Chem Soc ; 135(18): 7010-8, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23586965

RESUMO

Magnetic anisotropy is the property that confers to the spin a preferred direction that could be not aligned with an external magnetic field. Molecules that exhibit a high degree of magnetic anisotropy can behave as individual nanomagnets in the absence of a magnetic field, due to their predisposition to maintain their inherent spin direction. Until now, it has proved very hard to predict magnetic anisotropy, and as a consequence, most synthetic work has been based on serendipitous processes in the search for large magnetic anisotropy systems. The present work shows how the property can be predicted based on the coordination numbers and electronic structures of paramagnetic centers. Using these indicators, two Co(II) complexes known from literature have been magnetically characterized and confirm the predicted single-molecule magnet behavior.


Assuntos
Cobalto/química , Imãs/química , Compostos Organometálicos/química , Anisotropia , Cristalografia por Raios X , Campos Magnéticos , Modelos Moleculares , Compostos Organometálicos/síntese química , Teoria Quântica
20.
Chemistry ; 19(51): 17567-77, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24265054

RESUMO

A series of heterometallic [Ln(III)(x)Cu(II)(y)] complexes, [Gd2Cu2]n (1), [Gd4Cu8] (2), [Ln9Cu8] (Ln=Gd, 3·Gd; Ln=Dy, 3·Dy), were successfully synthesized by a one-pot route at room temperature with three kinds of in situ carbonyl-related reactions: Cannizzaro reaction, aldol reaction, and oxidation. This strategy led to dysprosium analogues that behaved as single-molecule magnets (SMMs) and gadolinium analogues that showed significant magnetocaloric effect (MCE). In this study a numerical DFT approach is proposed by using pseudopotentials to calculate the exchange coupling constants in three polynuclear [Gd(x)Cu(y)] complexes; with these values exact diagonalization or quantum Monte Carlo simulations have been performed to calculate the variation of the magnetic entropy involved in the MCE. For the [Dy9Cu8] complexes, local magnetic properties of the Dy(III) centers have been determined by using the CASSCF+RASSI method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA