Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Brain ; 146(8): 3162-3171, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37043503

RESUMO

ATP1A3 encodes the α3 subunit of the sodium-potassium ATPase, one of two isoforms responsible for powering electrochemical gradients in neurons. Heterozygous pathogenic ATP1A3 variants produce several distinct neurological syndromes, yet the molecular basis for phenotypic variability is unclear. We report a novel recurrent variant, ATP1A3(NM_152296.5):c.2324C>T; p.(Pro775Leu), in nine individuals associated with the primary clinical features of progressive or non-progressive spasticity and developmental delay/intellectual disability. No patients fulfil diagnostic criteria for ATP1A3-associated syndromes, including alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism or cerebellar ataxia-areflexia-pes cavus-optic atrophy-sensorineural hearing loss (CAPOS), and none were suspected of having an ATP1A3-related disorder. Uniquely among known ATP1A3 variants, P775L causes leakage of sodium ions and protons into the cell, associated with impaired sodium binding/occlusion kinetics favouring states with fewer bound ions. These phenotypic and electrophysiologic studies demonstrate that ATP1A3:c.2324C>T; p.(Pro775Leu) results in mild ATP1A3-related phenotypes resembling complex hereditary spastic paraplegia or idiopathic spastic cerebral palsy. Cation leak provides a molecular explanation for this genotype-phenotype correlation, adding another mechanism to further explain phenotypic variability and highlighting the importance of biophysical properties beyond ion transport rate in ion transport diseases.


Assuntos
Ataxia Cerebelar , Deficiência Intelectual , Humanos , Mutação/genética , Síndrome , Deficiência Intelectual/genética , Ataxia Cerebelar/genética , Fenótipo , Espasticidade Muscular/genética , Cátions , ATPase Trocadora de Sódio-Potássio/genética
2.
Ann Hum Genet ; 86(3): 109-118, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34927723

RESUMO

Pathogenic variants in the AP4B1 gene lead to a rare form of hereditary spastic paraplegia (HSP) known as SPG47. We report on a patient with a clinical suspicion of complicated HSP of the lower limbs with intellectual disability, as well as a novel homozygous noncanonical splice site variant in the AP4B1 gene, in which the effect on splicing was validated by RNA analysis. We sequenced 152 genes associated with HSP using Next-Generation Sequencing (NGS). We isolated total RNA from peripheral blood and generated cDNA using reverse transcription-polymerase chain reaction (RT-PCR). A region of AP4B1 mRNA was amplified by PCR and the fragments obtained were purified from the agarose gel and sequenced. We found a homozygous variant of uncertain significance in the AP4B1 gene NM_006594.4: c.1511-6C>G in the proband. Two different AP4B1 mRNA fragments were obtained in the patient and his carrier parents. The shorter fragment was the predominant fragment in the patient and revealed a deletion with skipping of the AP4B1 exon 10. The patient's longer fragment corresponded to an insertion of the last five nucleotides of AP4B1 intron 9. We confirmed that this variant affects the normal splicing of RNA, sustaining the molecular diagnosis of SPG47 in the patient.


Assuntos
Paraplegia Espástica Hereditária , Complexo 4 de Proteínas Adaptadoras , Subunidades beta do Complexo de Proteínas Adaptadoras , Homozigoto , Humanos , Íntrons , Mutação , Linhagem , RNA , RNA Mensageiro/genética , Paraplegia Espástica Hereditária/genética
3.
Adv Lab Med ; 4(1): 28-51, 2023 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37359899

RESUMO

Prenatal genetic diagnosis of monogenic diseases is a process involving the use of a variety of molecular techniques for the molecular characterization of a potential monogenic disease in the fetus during pregnancy. Prenatal genetic diagnosis can be performed through invasive and non-invasive methods. A distinction must be made between "NIPD" (non-invasive prenatal diagnosis), which is considered to be diagnostic, from "NIPT" (non-invasive prenatal test), which is a screening test that requires subsequent confirmation by invasive methods. The different techniques currently available aim at detecting either, previously characterized pathogenic mutations in the family, the risk haplotype associated with the familial mutation, or potential pathogenic mutation(s) in a gene associated with a diagnostic suspicion. An overview is provided of relevant aspects of prenatal genetic diagnosis of monogenic diseases. The objective of this paper is to describe the main molecular techniques currently available and used in clinical practice. A description is provided of the indications, limitations and analytical recommendations regarding these techniques, and the standards governing genetic counseling. Continuous rapid advances in the clinical applications of genomics have provided increased access to comprehensive molecular characterization. Laboratories are struggling to keep in pace with technology developments.

4.
J Cyst Fibros ; 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38151412

RESUMO

BACKGROUND: The diagnosis of cystic fibrosis (CF) is established when characteristic clinical signs are coupled with biallelic CFTR pathogenic variants. No previously reported non-canonical splice site variants have to be considered as variants of uncertain significance unless their effect on splicing has been validated. METHODS: Two variants identified by next-generation sequencing were evaluated. We assayed their effects on splicing employing RNA analysis and real-time expression quantification from RNA obtained from the nasal epithelial cells of a patient with clinically suspected CF and of two patients with milder phenotypes (CFTR-related disorders). RESULTS: The variant c.164+2dup causes skipping of exon 2 (p.(Ser18_Glu54del)) and exon 2 plus 3 (p.(Ser18Argfs*16)) in CFTR mRNA. Exon 2 expression in the patient heterozygous for c.164+2dup was decreased to 7 % of the exon 2 expression in the controls. The synonymous variant c.1584G>A causes a partial skipping of exon 11. The exon 11 expression in the two patients heterozygous for this variant was 22 % and 42 % of that of the controls, respectively. CONCLUSION: We conclude that variant c.164+2dup affects mRNA processing and can be considered a CF-causing variant. The results of the functional assay also showed that the p.(Glu528=) variant, usually categorized as a neutral variant based on epidemiological data, partially affects mRNA processing in our patients. This finding would allow us to reclassify the variant as a CFTR-related variant with incomplete penetrance. RNA obtained from nasal epithelial cells is an easy and accurate tool for CFTR functional studies in patients with unclassified splice variants.

5.
Eur J Med Genet ; 64(4): 104170, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33618039

RESUMO

X-linked myotubular myopathy (XLMTM; OMIM 310400) is a centronuclear congenital muscular disorder of X-linked recessive inheritance. Although female carriers are typically asymptomatic, affected heterozygous females have been described. Here, we describe the case of a sporadic female patient with suspicion of centronuclear myopathy and a heterozygous large deletion at Xq28 encompassing the MAMLD1, MTM1, MTMR1, CD99L2, and HMGB3 genes. The deletion was first detected using a custom next generation sequencing (NGS)-based multigene panel and finally characterized by comparative genomic hybridization array and multiplex ligation probe assay techniques. In this patient we have confirmed, by MTM1 mRNA quantification, a MTM1 gene expression less than the expected 50 percent in patient muscle. The significant 20% reduction in MTM1 mRNA expression in muscle, precludes low level of the normal myotubularin protein as the cause of the phenotype in this heterozygous female. We have also found that BIN1 expression in patient muscle biopsy was significantly increased, and postulate that BIN1 expression will be increased in XLMTM patient muscle as an attempt to maintain muscle function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Deleção Cromossômica , Miopatias Congênitas Estruturais/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Supressoras de Tumor/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Cromossomos Humanos X/genética , Feminino , Heterozigoto , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo
6.
J Genet ; 982019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31544778

RESUMO

Myotonia congenita (MC) is a Mendelian inherited genetic disease caused by the mutations in the CLCN1 gene, encoding the main skeletal muscle ion chloride channel (ClC-1). The clinical diagnosis of MC should be suspected in patients presenting myotonia, warm-up phenomenon, a characteristic electromyographic pattern, and/or family history. Here, we describe the largest cohort of MC Spanish patients including their relatives (up to 102 individuals). Genetic testing was performed by CLCN1 sequencing and multiplex ligation-dependent probe amplification (MLPA). Analysis of selected exons of the SCN4A gene, causing paramyotonia congenita, was also performed. Mutation spectrum and analysis of a likely founder effect of c.180+3A>T was achieved by haplotype analysis and association tests. Twenty-eight different pathogenic variants were found in the CLCN1 gene, of which 21 were known mutations and seven not described. Gross deletions/duplications were not detected. Four probands had a pathogenic variant in SCN4A. Two main haplotypes were detected in c.180+3A>T carriers and no statistically significant differences were detected between case and control groups regarding the type of haplotype and its frequencies. A diagnostic yield of 51% was achieved; of which 88% had pathogenic variants in CLCN1 and 12% in SCN4A. The existence of a c.180+3A>T founder effect remains unsolved.


Assuntos
Canais de Cloreto/genética , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Estudos de Coortes , Éxons , Feminino , Efeito Fundador , Haplótipos , Humanos , Masculino , Músculo Esquelético/metabolismo , Mutação , Miotonia Congênita/diagnóstico , Polimorfismo de Nucleotídeo Único , Espanha
7.
Neuromuscul Disord ; 27(12): 1123-1125, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29111379

RESUMO

Paramyotonia congenita (OMIM 168300) is a non-dystrophic myopathy caused by mutations in the SCN4A gene that sometimes can be confused with myotonia congenita. Another disease also caused by mutations in the gene SCN4A is called myotonia aggravated by potassium (OMIM 170500, 613345). It is estimated that more than 20% of patients with suspected myotonia congenita suffer paramyotonia congenita. The two related SCN4A phenotypes exhibit an autosomal dominant inheritance and are the result of mutations that cause an increase in the function of the protein coded by this gene. In this study we present a case of paramyotonia congenita in a family with several affected members and in which a mutation in the SCN4A gene was identified. Evolutionary conservation data and predictive algorithms of pathogenicity allow us to conclude that this DNA variant is the cause of the disease in this family.


Assuntos
Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA