Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(9): 260, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594553

RESUMO

Oligodendrocytes are generated via a two-step mechanism from pluripotent neural stem cells (NSCs): after differentiation of NSCs to oligodendrocyte precursor/NG2 cells (OPCs), they further develop into mature oligodendrocytes. The first step of this differentiation process is only incompletely understood. In this study, we utilized the neurosphere assay to investigate NSC to OPC differentiation in a time course-dependent manner by mass spectrometry-based (phospho-) proteomics. We identify doublecortin-like kinase 1 (Dclk1) as one of the most prominently regulated proteins in both datasets, and show that it undergoes a gradual transition between its short/long isoform during NSC to OPC differentiation. This is regulated by phosphorylation of its SP-rich region, resulting in inhibition of proteolytic Dclk1 long cleavage, and therefore Dclk1 short generation. Through interactome analyses of different Dclk1 isoforms by proximity biotinylation, we characterize their individual putative interaction partners and substrates. All data are available via ProteomeXchange with identifier PXD040652.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Diferenciação Celular , Quinases Semelhantes a Duplacortina , Oligodendroglia , Fosforilação , Proteínas Serina-Treonina Quinases , Proteômica
2.
J Proteome Res ; 17(1): 46-54, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29083192

RESUMO

The identification of large numbers of phosphopeptides from complex samples largely relies on sample fractionation to reduce complexity and allow using large amounts of starting material. For such experiments, commonly fractionation of whole cell lysate digests followed by enrichment of phosphopeptides from the single fractions is performed. We evaluated the tip-based fractionation of batch-enriched phosphopeptides as an alternative method. We compared three tip-based fractionation methods employing strong cation exchange (SCX), strong anion exchange (SAX), and C18 material for basic reversed-phase (BRP) fractionation using HeLa whole cell lysate digests. We show that SCX tips are superior to BRP and SAX tips due to a more efficient retention and distribution of phosphopeptides as well as a better resolution. Furthermore, we show that tip-based fractionation results in a similar performance as fractionation followed by phosphopeptide enrichment of the single fractions and outperforms analysis of unfractionated phosphopeptide-enriched samples with long chromatography gradients. Our fractionation approach using SCX tips is straightforward, reproducible, and requires a fraction of time, effort, and instrumentation compared to those of the fractionation of whole cell lysate digests with subsequent enrichment of phosphopeptides from the single fractions.


Assuntos
Fosfopeptídeos/análise , Proteômica/métodos , Fracionamento Químico , Cromatografia de Fase Reversa , Células HeLa , Humanos , Troca Iônica , Fatores de Tempo
3.
Sci Rep ; 6: 19614, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26804343

RESUMO

Eccentric exercise leads to focal disruptions in the myofibrils, referred to as "lesions". These structures are thought to contribute to the post-exercise muscle weakness, and to represent areas of mechanical damage and/or remodelling. Lesions have been investigated in human biopsies and animal samples after exercise. However, this approach does not examine the mechanisms behind lesion formation, or their behaviour during contraction. To circumvent this, we used electrical pulse stimulation (EPS) to simulate exercise in C2C12 myotubes, combined with live microscopy. EPS application led to the formation of sarcomeric lesions in the myotubes, resembling those seen in exercised mice, increasing in number with the time of application or stimulation intensity. Furthermore, transfection with an EGFP-tagged version of the lesion and Z-disc marker filamin-C allowed us to observe the formation of lesions using live cell imaging. Finally, using the same technique we studied the behaviour of these structures during contraction, and observed them to be passively stretching. This passive behaviour supports the hypothesis that lesions contribute to the post-exercise muscle weakness, protecting against further damage. We conclude that EPS can be reliably used as a model for the induction and study of sarcomeric lesions in myotubes in vitro.


Assuntos
Músculo Esquelético/ultraestrutura , Condicionamento Físico Animal , Sarcômeros/ultraestrutura , Animais , Biópsia , Humanos , Camundongos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/fisiopatologia , Sarcômeros/patologia , Sarcômeros/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA