Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neural Eng ; 20(4)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37531951

RESUMO

In recent years, there has been a growing demand for miniaturization, low power consumption, quick treatments, and non-invasive clinical strategies in the healthcare industry. To meet these demands, healthcare professionals are seeking new technological paradigms that can improve diagnostic accuracy while ensuring patient compliance. Neuromorphic engineering, which uses neural models in hardware and software to replicate brain-like behaviors, can help usher in a new era of medicine by delivering low power, low latency, small footprint, and high bandwidth solutions. This paper provides an overview of recent neuromorphic advancements in medicine, including medical imaging and cancer diagnosis, processing of biosignals for diagnosis, and biomedical interfaces, such as motor, cognitive, and perception prostheses. For each section, we provide examples of how brain-inspired models can successfully compete with conventional artificial intelligence algorithms, demonstrating the potential of neuromorphic engineering to meet demands and improve patient outcomes. Lastly, we discuss current struggles in fitting neuromorphic hardware with non-neuromorphic technologies and propose potential solutions for future bottlenecks in hardware compatibility.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Algoritmos , Computadores , Software
2.
JMIR Res Protoc ; 12: e48387, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831494

RESUMO

BACKGROUND: Systemic lupus erythematosus is a chronic, multisystem, inflammatory disease of autoimmune etiology occurring predominantly in women. A major hurdle to the diagnosis, treatment, and therapeutic advancement of this disease is its heterogeneous nature, which presents as a wide range of symptoms such as fatigue, fever, musculoskeletal involvement, neuropsychiatric disorders, and cardiovascular involvement with varying severity. The current therapeutic approach to this disease includes the administration of immunomodulatory drugs that may produce unfavorable secondary effects. OBJECTIVE: This study explores the known relationship between the autonomic nervous system and inflammatory pathways to improve patient outcomes by treating autonomic nervous system dysregulation in patients via noninvasive vagus nerve stimulation. In this study, data including biomarkers, physiological signals, patient outcomes, and patient quality of life are being collected and analyzed. After completion of the clinical trial, a computer model will be developed to identify the biomarkers and physiological signals related to lupus activity in order to understand how they change with different noninvasive vagus nerve stimulation frequency parameters. Finally, we propose building a decision support system with integrated noninvasive wearable technologies for continuous cardiovascular and peripheral physiological sensing for adaptive, patient-specific optimization of the noninvasive vagus nerve stimulation frequency parameters in real time. METHODS: The protocol was designed to evaluate the efficacy and safety of transauricular vagus nerve stimulation in patients with systemic lupus erythematosus. This multicenter, national, randomized, double-blind, parallel-group, placebo-controlled study will recruit a minimum of 18 patients diagnosed with this disease. Evaluation and treatment of patients will be conducted in an outpatient clinic and will include 12 visits. Visit 1 consists of a screening session. Subsequent visits up to visit 6 involve mixing treatment and evaluation sessions. Finally, the remaining visits correspond with early and late posttreatment follow-ups. RESULTS: On November 2022, data collection was initiated. Of the 10 participants scheduled for their initial appointment, 8 met the inclusion criteria, and 6 successfully completed the entire protocol. Patient enrollment and data collection are currently underway and are expected to be completed in December 2023. CONCLUSIONS: The results of this study will advance patient-tailored vagus nerve stimulation therapies, providing an adjunctive treatment solution for systemic lupus erythematosus that will foster adoption of technology and, thus, expand the population with systemic lupus erythematosus who can benefit from improved autonomic dysregulation, translating into reduced costs and better quality of life. TRIAL REGISTRATION: ClinicalTrials.gov NCT05704153; https://clinicaltrials.gov/study/NCT05704153. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/48387.

3.
Bioelectron Med ; 7(1): 8, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34030736

RESUMO

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disorder that commonly affects the skin, joints, kidneys, and central nervous system. Although great progress has been made over the years, patients still experience unfavorable secondary effects from medications, increased economic burden, and higher mortality rates compared to the general population. To alleviate these current problems, non-invasive, non-pharmacological interventions are being increasingly investigated. One such intervention is non-invasive vagus nerve stimulation, which promotes the upregulation of the cholinergic anti-inflammatory pathway that reduces the activation and production of pro-inflammatory cytokines and reactive oxygen species, culpable processes in autoimmune diseases such as SLE. This review first provides a background on the important contribution of the autonomic nervous system to the pathogenesis of SLE. The gross and structural anatomy of the vagus nerve and its contribution to the inflammatory response are described afterwards to provide a general understanding of the impact of stimulating the vagus nerve. Finally, an overview of current clinical applications of invasive and non-invasive vagus nerve stimulation for a variety of diseases, including those with similar symptoms to the ones in SLE, is presented and discussed. Overall, the review presents neuromodulation as a promising strategy to alleviate SLE symptoms and potentially reverse the disease.

4.
Sci Rep ; 11(1): 4660, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633250

RESUMO

Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illness (CLI) symptoms across the US using a smartphone app and applies spatio-temporal clustering techniques and cross-correlation analysis to create maps of abnormal symptomatology incidence that are made publicly available. The results of the cross-correlation analysis identify optimal temporal lags between symptoms and a range of COVID-19 outcomes, with new taste/smell loss showing the highest correlations. We also identified temporal clusters of change in taste/smell entries and confirmed COVID-19 incidence in Baltimore City and County. Further, we utilized an extended simulated dataset to showcase our analytics in Maryland. The resulting clusters can serve as indicators of emerging COVID-19 outbreaks, and support syndromic surveillance as an early warning system for disease prevention and control.


Assuntos
COVID-19/epidemiologia , Aplicativos Móveis , Vigilância de Evento Sentinela , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ageusia/epidemiologia , Anosmia/epidemiologia , Temperatura Corporal , Análise por Conglomerados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Smartphone , Estados Unidos/epidemiologia , Adulto Jovem
5.
IEEE J Biomed Health Inform ; 24(5): 1439-1446, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31536025

RESUMO

In type 1 diabetes management, maintaining nocturnal blood glucose within target range can be challenging. Although semi-automatic systems to modulate insulin pump delivery, such as low-glucose insulin suspension and the artificial pancreas, are starting to become a reality, their elevated cost and performance below user expectations is hindering their adoption. Hence, a decision support system that helps people with type 1 diabetes, on multiple daily injections or insulin pump therapy, to avoid undesirable overnight blood glucose fluctuations (hyper- or hypoglycaemic) is an attractive alternative. In this paper, we introduce a novel data-driven approach to predict the quality of overnight glycaemic control in people with type 1 diabetes by analyzing commonly gathered data during the day-time period (continuous glucose monitoring data, meal intake and insulin boluses). The proposed approach is able to predict whether overnight blood glucose concentrations are going to remain within or outside the target range, and therefore allows the user to take the appropriate preventive action (snack or change in basal insulin). For this purpose, a number of popular established machine learning algorithms for binary classification were evaluated and compared on a publicly available clinical dataset (i.e., OhioT1DM). Although there is no clearly superior classification algorithm, this study indicates that, by using commonly gathered data in type 1 diabetes management, it is possible to predict the quality of overnight glycaemic control with reasonable accuracy (AUC-ROC = 0.7).


Assuntos
Sistemas de Apoio a Decisões Clínicas , Diabetes Mellitus Tipo 1 , Controle Glicêmico/métodos , Aprendizado de Máquina , Adulto , Algoritmos , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Insulina/administração & dosagem , Insulina/uso terapêutico , Pessoa de Meia-Idade , Sono
6.
Med Biol Eng Comput ; 57(6): 1173-1186, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30685858

RESUMO

The nervous system has a significant impact in glucose homeostasis and endocrine pancreatic secretion in humans, especially during the cephalic phase of insulin release (CPIR); that is, before a meal is absorbed. However, the underlying mechanisms of this neural-pancreatic interaction are not well understood and therefore often neglected, despite their significance to achieving an optimal glucose control. As a result, the dynamics of insulin release from the pancreas are currently described by mathematical models that reproduce the behavior of the ß cells using exclusively glucose levels and other hormones as inputs. To bridge this gap, we have combined, for the first time, metabolic and neural mathematical models in a unified system to reproduce to a great extent the ideal glucoregulation observed in healthy subjects. Our results satisfactorily replicate the CPIR and its impact during the post-absorptive phase. Furthermore, the proposed model gives insight into the physiological interaction between the brain and the pancreas in healthy people and suggests the potential of considering the neural information for restoring glucose control in people with diabetes. Graphical Abstract (a) Physiological scenario. Diagram of the biological interaction among the most important organs involved in glucose control during meal intake. (b) Scheme of the unified bio-inspired neural-metabolic model. Each of the boxes represents one subsystem of the model. The pink shades boxes depicts the novel subsystems introduced to the current metabolic models (grey shaded boxes). Insulin-related action and mass fluxes (solid black lines) and glucose-related action and mass flux (dotted black lines) are depicted to show the relationship among the blocks. I(t), Ic(t), G(t) and SI related to plasma insulin, plasma cephalic insulin, plasma glucose and insulin sensitivity, respectively.


Assuntos
Glucose/metabolismo , Secreção de Insulina , Modelos Biológicos , Acetilcolina/metabolismo , Glicemia/metabolismo , Humanos , Insulina/sangue , Resistência à Insulina , Vias Neurais/metabolismo , Período Pós-Prandial
7.
Bioelectron Med ; 4: 9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32232085

RESUMO

Diabetes is a disease caused by a breakdown in the glucose metabolic process resulting in abnormal blood glucose fluctuations. Traditionally, control has involved external insulin injection in response to elevated blood glucose to substitute the role of the beta cells in the pancreas which would otherwise perform this function in a healthy individual. The central nervous system (CNS), however, also plays a vital role in glucose homoeostasis through the control of pancreatic secretion and insulin sensitivity which could potentially be used as a pathway for enhancing glucose control. In this review, we present an overview of the brain regions, peripheral nerves and molecular mechanisms by which the CNS regulates glucose metabolism and the potential benefits of modulating them for diabetes management. Development of technologies to interface to the nervous system will soon become a reality through bioelectronic medicine and we present the emerging opportunities for the treatment of type 1 and type 2 diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA