Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 30(23): 6768-79, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24892967

RESUMO

Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.


Assuntos
Lipídeos/química , Polímeros/química , Polimerização , Poliestirenos/química , Compostos de Amônio Quaternário/química , Termodinâmica
2.
J Phys Chem B ; 111(29): 8426-34, 2007 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-17461567

RESUMO

With X-ray and neutron reflectivity, the structure and composition of polyelectrolyte multilayers from poly(allyl amine) (PAH) and poly(styrene sulfonate) (PSS) are studied as function of preparation conditions (salt concentration and solution temperature, T). The onset of a temperature effect occurs at 0.05 M NaCl (Debye length approximately 1 nm). At 1 M salt, the film thickness increases by a factor of 3 on heating the deposition solution from 5 to 60 degrees C. The PAH/PSS bilayer thickness is independent of the kind of salt (NaCl or KCl), yet its composition is different (more bound water for NaCl). At low T, the internal roughness is 33% of the bilayer thickness; it increases to 60% at high T. The roughening is accompanied by a total loss of bound water. At which temperature the roughening starts is a function of the kind of salt (50 degrees C for NaCl and 35 degrees C for KCl). The strong temperature dependence and the eventual loss of bound water molecules may be attributed to the hydrophobic force; however, there is an isotope effect, since the loss of bound water is less pronounced in the deuterated layers.

3.
Arterioscler Thromb Vasc Biol ; 26(10): 2386-93, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16873726

RESUMO

OBJECTIVE: Heparin-induced thrombocytopenia (HIT) is a prothrombotic drug reaction caused by antibodies that recognize positively charged platelet factor 4 (PF4), bound to the polyanion, heparin. The resulting immune complexes activate platelets. Unfractionated heparin (UFH) causes HIT more frequently than low-molecular-weight heparin (LMWH), whereas the smallest heparin-like molecule (the pentasaccharide, fondaparinux), induces anti-PF4/heparin antibodies as frequently as LMWH, but without exhibiting cross-reactivity with these antibodies. To better understand these findings, we analyzed the molecular structure of the complexes formed between PF4 and UFH, LMWH, or fondaparinux. METHODS AND RESULTS: By atomic force microscopy and photon correlation spectroscopy, we show that with any of the 3 polyanions, but in the order, UFH>LMWH>>fondaparinux--PF4 forms clusters in which PF4 tetramers become closely apposed, and to which anti-PF4/heparin antibodies bind. By immunoassay, HIT antibodies bind strongly to PF4/H/PF4 complexes, but only weakly to single PF4/heparin molecules. CONCLUSIONS: HIT antigens are formed when charge neutralization by polyanion allows positively charged PF4 tetramers to undergo close approximation. Whereas such a model could explain why all 3 polyanions form antibodies with similar specificities, the striking differences in the relative size and amount of complexes formed likely correspond to the observed differences in immunogenicity (UFH>LMWH approximately fondaparinux) and clinically relevant cross-reactivity (UFH>LMWH>>fondaparinux).


Assuntos
Anticorpos/imunologia , Heparina/efeitos adversos , Fator Plaquetário 4/química , Fator Plaquetário 4/imunologia , Trombocitopenia/induzido quimicamente , Trombocitopenia/imunologia , Adsorção , Formação de Anticorpos , Ensaio de Imunoadsorção Enzimática , Fondaparinux , Heparina/imunologia , Heparina de Baixo Peso Molecular/imunologia , Humanos , Microscopia de Força Atômica , Fótons , Polissacarídeos/imunologia , Análise Espectral/métodos
4.
Langmuir ; 25(3): 1500-8, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19125602

RESUMO

Polystyrene sulfonate (PSS 77 kDa) adsorbed onto oppositely charged dioctadecyldimethylammonium bromide (DODA) monolayers at the air/water interface is investigated with X-ray reflectivity and grazing incidence diffraction. The alkyl tails of DODA in the condensed phase form an oblique lattice with large tilts and intermediate azimuth angle. On PSS adsorption, the alkyl tail structure is maintained; only the tilt angle changes. Bragg peaks caused by flatly adsorbed, aligned PSS chains are observed, when DODA is in the fluid and also when it is in the condensed phase. The two-dimensional lamellar phase is only found at intermediate PSS bulk concentrations (0.001-1 mmol/L). In this phase, the PSS coverage can be varied by a factor of 3, depending on DODA molecular area and polymer bulk concentration. Charge compensation in the lamellar phase is almost achieved at 1 mmol/L. At larger bulk concentrations, PSS adsorbs flatly yet without chain alignment. Presumably, a necessary condition for a two-dimensional lamellar phase is a pronounced electrostatic force which causes a large persistence length as well as repulsion between the aligned chains.


Assuntos
Lipídeos/química , Poliestirenos/química , Adsorção , Alquilação , Eletrólitos , Compostos de Amônio Quaternário/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA